1 |
中钞特种防伪科技有限公司,中国印钞造币总公司. 一种全视差衍射光变图像光学防伪元件: 201410377206.6[P]. 2016-02-10.
|
2 |
BERGMANN P, LÖWE S, FAUSER M, et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders[EB/OL]. [2023-04-08]..
|
3 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
|
4 |
PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 14360-14369.
|
5 |
SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. f⁃AnoGAN: fast unsupervised anomaly detection with generative adversarial networks[J]. Medical Image Analysis, 2019, 54: 30-44.
|
6 |
ROTH K, PEMULA L, ZEPEDA J, et al. Towards total recall in industrial anomaly detection[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4298-14308.
|
7 |
SALEHI M, MIRZAEI H, HENDRYCKS D, et al. A unified survey on anomaly, novelty, open-set, and out-of-distribution detection: solutions and future challenges[EB/OL]. [2024-04-08]..
|
8 |
DENG H, LI X. Anomaly detection via reverse distillation from one-class embedding[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9727-9736.
|
9 |
BERGMANN P, FAUSER M, SATTLEGGER D, et al. MVTec AD — a comprehensive real-world dataset for unsupervised anomaly detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9584-9592.
|
10 |
BERGMANN P, BATZNER K, FAUSER M, et al. Beyond dents and scratches: logical constraints in unsupervised anomaly detection and localization[J]. International Journal of Computer Vision, 2022, 130(4): 947-969.
|
11 |
TIEN T D, NGUYEN A T, TRAN N H, et al. Revisiting reverse distillation for anomaly detection[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 24511-24520.
|
12 |
CAO Y, XU X, LIU Z, et al. Collaborative discrepancy optimization for reliable image anomaly localization[J]. IEEE Transactions on Industrial Informatics, 2023, 19(11): 10674-10683.
|
13 |
KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. [2023-04-08]..
|
14 |
ZAVRTANIK V, KRISTAN M, SKOČAJ D. DRÆM: a discriminatively trained reconstruction embedding for surface anomaly detection[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8310-8319.
|
15 |
YANG M, WU P, FENG H. MemSeg: a semi-supervised method for image surface defect detection using differences and commonalities[J]. Engineering Applications of Artificial Intelligence, 2023, 119: No.105835.
|
16 |
GONG D, LIU L, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1705-1714.
|
17 |
李俊祺,成苗,张绍兵,等. 基于投票筛选增强自编码器的纺织品缺陷分割算法[J]. 计算机应用, 2023, 43(S2): 229-237.
|
18 |
AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. GANomaly: semi-supervised anomaly detection via adversarial training[C]// Proceedings of the 2018 Asian Conference on Computer Vision, LNCS 11363. Cham: Springer, 2019: 622-637.
|
19 |
AKÇAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. Skip-GANomaly: skip connected and adversarially trained encoder-decoder anomaly detection[C]// Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8.
|
20 |
WU J C, CHEN D J, FUH C S, et al. Learning unsupervised Metaformer for anomaly detection[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 4349-4358.
|
21 |
COHEN N, HOSHEN Y. Sub-image anomaly detection with deep pyramid correspondences[EB/OL]. [2024-04-08]..
|
22 |
LEE S, LEE S, SONG B C. CFA: coupled-hypersphere-based feature adaptation for target-oriented anomaly localization[J]. IEEE Access, 2022, 10: 78446-78454.
|
23 |
DEFARD T, SETKOV A, LOESCH A, et al. PaDiM: a patch distribution modeling framework for anomaly detection and localization[C]// Proceedings of the 2021 International Conference on Pattern Recognition, LNCS 12664. Cham: Springer, 2021: 475-489.
|
24 |
HYUN J, KIM S, JEON G, et al. ReConPatch: contrastive patch representation learning for industrial anomaly detection[C]// Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 2041-2050.
|
25 |
BATZNER K, HECKLER L, KÖNIG R. EfficientAD: accurate visual anomaly detection at millisecond-level latencies[C]// Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 127-137.
|
26 |
BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: student-teacher anomaly detection with discriminative latent embeddings[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4182-4191.
|
27 |
CHEN X, HE K. Exploring simple Siamese representation learning[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 15745-15753.
|
28 |
PERLIN K. An image synthesizer[J]. ACM SIGGRAPH Computer Graphics, 1985, 19(3): 287-296.
|
29 |
ZAGORUYKO S, KOMODAKIS N. Wide residual networks[C]// Proceedings of the 2016 British Machine Vision Conference. Durham: BMVA Press, 2016: No.87.
|
30 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
|
31 |
KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. [2024-04-08]..
|