Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (11): 3529-3539.DOI: 10.11772/j.issn.1001-9081.2024111657

• Artificial intelligence • Previous Articles    

Multiscale information diffusion prediction model based on hypergraph neural network

Jinghua ZHAO1, Zhu ZHANG1, Xiting LYU1, Huidan LIN2()   

  1. 1.Business School,University of Shanghai for Science and Technology,Shanghai 200093,China
    2.Shanghai Innovation Center of Reverse Logistics and Supply Chain (Shanghai Polytechnic University),Shanghai 201209,China
  • Received:2024-11-22 Revised:2025-03-10 Accepted:2025-03-18 Online:2025-04-02 Published:2025-11-10
  • Contact: Huidan LIN
  • About author:ZHAO Jinghua, born in 1984, Ph. D.,associate professor. Her research interests include popularity prediction, interactive innovation.
    ZHANG Zhu, born in 2002, M. S. candidate.His research interests include popularity prediction.
    LYU Xiting, born in 1997, M. S. candidate. Her research interests include popularity prediction.
  • Supported by:
    National Natural Science Foundation of China(72201173);Shanghai Educational Science Research Project(C2023292);Open Project of Shanghai Innovation Center of Reverse Logistics and Supply Chain

基于超图神经网络的多尺度信息传播预测模型

赵敬华1, 张柱1, 吕锡婷1, 林慧丹2()   

  1. 1.上海理工大学 管理学院,上海 200093
    2.上海市逆向物流与供应链协同创新中心(上海第二工业大学),上海 201209
  • 通讯作者: 林慧丹
  • 作者简介:赵敬华(1984—),女,山东冠县人,副教授,博士,主要研究方向:流行度预测、互动创新
    张柱(2002—),男,湖南岳阳人,硕士研究生,主要研究方向:流行度预测
    吕锡婷(1997—),女,浙江余姚人,硕士研究生,主要研究方向:流行度预测
  • 基金资助:
    国家自然科学基金资助项目(72201173);上海市教育科学研究项目(C2023292);上海市逆向物流与供应链协同创新中心开放课题

Abstract:

To address the limitations of existing multiscale information diffusion prediction models, which ignore the dynamic characteristic of cascade propagation and exhibit limited performance in independent microscopic information prediction, a Multiscale Information Diffusion prediction model based on HyperGraph Neural Network (MIDHGNN)was proposed. Firstly, Graph Convolutional Network (GCN) was used to extract user social relationship features from the social network graphs, while HyperGraph Neural Network (HGNN)was used to extract global user preference features from propagation cascade graphs. These two types of features were fused to enable microscopic information diffusion prediction. Secondly, Gated Recurrent Unit (GRU) was employed to sequentially predict potential spreaders until reaching virtual users. The cumulative number of predicted users at each step was regarded as the determined cascade size for macroscopic propagation forecasting. Finally, a Reinforcement Learning (RL) framework using policy gradient to optimize parameters significantly enhanced macroscopic information diffusion prediction performance. For microscopic information diffusion prediction, compared to the suboptimal model, MIDHGNN achieves average improvements of 12.01%, 11.64%, and 9.74% in Hits@k on Twitter, Douban, and Android datasets, respectively, and average improvements of 31.31%, 14.85%, and 13.24% in mAP@k. For macroscopic prediction, MIDHGNN reduces the Mean Squared Logarithmic Error (MSLE) by at least 8.10%, 12.61%, and 3.24% on these three datasets, respectively, with all metrics significantly outperforming the comparison models, validating its effectiveness.

Key words: information diffusion prediction, Graph Convolutional Network (GCN), HyperGraph Neural Network (HGNN), Reinforcement Learning (RL), multiscale

摘要:

针对现有多尺度信息传播预测模型忽略了级联传播的动态性,以及独立进行微观信息预测时性能有待提高的问题,提出基于超图神经网络的多尺度信息传播预测模型(MIDHGNN)。首先,使用图卷积网络(GCN)提取社交网络图中蕴含的用户社交关系特征,使用超图神经网络(HGNN)提取传播级联图中蕴含的用户全局偏好特征,并融合这2类特征进行微观信息传播预测;其次,利用门控循环单元(GRU)连续预测传播用户,直至虚拟用户;再次,将每次预测所得用户总数作为级联的最终规模,完成宏观信息传播预测;最后,在模型中嵌入强化学习(RL)框架,采用策略梯度方法优化参数,提升宏观信息传播预测性能。在微观信息传播预测方面,相较于次优模型,MIDHGNN在Twitter、Douban、Android数据集上的Hits@k指标分别平均提升12.01%、11.64%、9.74%,mAP@k指标分别平均提升31.31%、14.85%、13.24%;在宏观预测方面,MIDHGNN在这3个数据集上的均方对数误差(MSLE)指标分别最少降低8.10%、12.61%、3.24%,各项指标均显著优于对比模型,验证了它的有效性。

关键词: 信息传播预测, 图卷积网络, 超图神经网络, 强化学习, 多尺度

CLC Number: