Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (12): 3779-3785.DOI: 10.11772/j.issn.1001-9081.2024121863
• Artificial intelligence • Previous Articles Next Articles
Zhengyue ZHANG1,2, Juhong PENG1,2, Zixu DING1,2, Xinyu FAN1,2, Changyu HU1,2
Received:2025-01-03
Revised:2025-03-30
Accepted:2025-04-07
Online:2025-04-16
Published:2025-12-10
Contact:
Juhong PENG
About author:ZHANG Zhengyue, born in 2000, M. S. candidate. His research interests include aspect-based sentiment analysis, aspect sentiment triplet extraction.Supported by:张正悦1,2, 彭菊红1,2, 丁子胥1,2, 范馨予1,2, 胡长玉1,2
通讯作者:
彭菊红
作者简介:张正悦(2000—),男,安徽池州人,硕士研究生,CCF会员,主要研究方向:方面级情感分析、方面情感三元组抽取基金资助:CLC Number:
Zhengyue ZHANG, Juhong PENG, Zixu DING, Xinyu FAN, Changyu HU. Aspect sentiment triplet extraction model with multi-view linguistic features and sentiment lexicon[J]. Journal of Computer Applications, 2025, 45(12): 3779-3785.
张正悦, 彭菊红, 丁子胥, 范馨予, 胡长玉. 融合情感词典的多视角语言特征方面情感三元组抽取模型[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 3779-3785.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024121863
| 子数据集 | 划分 | 句子数 | 三元组数 |
|---|---|---|---|
| 14lap | 训练集 | 906 | 1 460 |
| 验证集 | 219 | 346 | |
| 测试集 | 328 | 543 | |
| 14res | 训练集 | 1 266 | 2 388 |
| 验证集 | 310 | 577 | |
| 测试集 | 492 | 994 | |
| 15res | 训练集 | 605 | 1 013 |
| 验证集 | 148 | 249 | |
| 测试集 | 322 | 485 | |
| 16res | 训练集 | 857 | 1 394 |
| 验证集 | 210 | 339 | |
| 测试集 | 326 | 514 |
Tab. 1 Statistics of datasets
| 子数据集 | 划分 | 句子数 | 三元组数 |
|---|---|---|---|
| 14lap | 训练集 | 906 | 1 460 |
| 验证集 | 219 | 346 | |
| 测试集 | 328 | 543 | |
| 14res | 训练集 | 1 266 | 2 388 |
| 验证集 | 310 | 577 | |
| 测试集 | 492 | 994 | |
| 15res | 训练集 | 605 | 1 013 |
| 验证集 | 148 | 249 | |
| 测试集 | 322 | 485 | |
| 16res | 训练集 | 857 | 1 394 |
| 验证集 | 210 | 339 | |
| 测试集 | 326 | 514 |
| 模型 | 14res | 14lap | 15res | 16res | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Peng-two-stage | 43.24 | 63.66 | 51.46 | 37.38 | 50.38 | 42.87 | 48.07 | 57.51 | 52.32 | 46.96 | 64.24 | 54.21 |
| GTS-BERT | 67.76 | 67.29 | 67.50 | 57.82 | 51.32 | 54.36 | 62.59 | 57.94 | 60.15 | 66.08 | 66.91 | 67.93 |
| Span-ASTE | 74.37 | 71.83 | 71.85 | 56.72 | 62.22 | 66.38 | 63.51 | 63.27 | 71.17 | 70.26 | ||
| BMRC | 72.51 | 72.23 | 72.62 | 68.13 | 57.09 | 62.12 | 65.90 | 65.90 | 65.63 | 69.98 | 76.68 | 73.16 |
| EMC-GCN | 71.21 | 72.39 | 71.78 | 61.70 | 56.26 | 58.81 | 61.54 | 62.47 | 61.93 | 65.52 | 71.30 | 68.33 |
| SSED-ASTE | 71.15 | 69.85 | 70.49 | 60.76 | 51.13 | 56.08 | 52.30 | 60.95 | 61.60 | 67.50 | 69.28 | 68.36 |
| MBGCN | 67.92 | 75.18 | 71.37 | 59.96 | 57.86 | 58.89 | 62.25 | 63.92 | 63.07 | 63.76 | 71.35 | 67.34 |
| SA-Transformer | 70.76 | 65.85 | 68.22 | 61.28 | 49.98 | 54.44 | 62.82 | 68.31 | 60.48 | 72.01 | 62.87 | 67.13 |
| AE-GCN | 71.37 | 73.02 | 71.70 | 60.08 | 59.23 | 62.63 | 61.86 | 62.24 | 67.44 | 73.29 | 70.34 | |
| CONTRASTE | 73.60 | 74.00 | 64.20 | 61.70 | 65.30 | 66.10 | 72.20 | 74.20 | ||||
| SAAG | 70.75 | 73.30 | 62.63 | 56.88 | 59.62 | 61.51 | 62.26 | 61.38 | 69.26 | 71.51 | 70.37 | |
| DRN | 75.24 | 64.49 | 69.45 | 66.99 | 52.61 | 58.94 | 68.61 | 55.47 | 61.34 | 73.30 | 64.42 | 68.57 |
| BDTF | 75.53 | 73.24 | 65.78 | 55.97 | 61.74 | 63.71 | 71.44 | 73.13 | 72.27 | |||
| MVLF-SL | 77.58 | 72.43 | 74.92 | 72.92 | 56.74 | 63.82 | 72.08 | 64.94 | 68.32 | 72.96 | 75.09 | |
Tab.2 Experimental results
| 模型 | 14res | 14lap | 15res | 16res | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Peng-two-stage | 43.24 | 63.66 | 51.46 | 37.38 | 50.38 | 42.87 | 48.07 | 57.51 | 52.32 | 46.96 | 64.24 | 54.21 |
| GTS-BERT | 67.76 | 67.29 | 67.50 | 57.82 | 51.32 | 54.36 | 62.59 | 57.94 | 60.15 | 66.08 | 66.91 | 67.93 |
| Span-ASTE | 74.37 | 71.83 | 71.85 | 56.72 | 62.22 | 66.38 | 63.51 | 63.27 | 71.17 | 70.26 | ||
| BMRC | 72.51 | 72.23 | 72.62 | 68.13 | 57.09 | 62.12 | 65.90 | 65.90 | 65.63 | 69.98 | 76.68 | 73.16 |
| EMC-GCN | 71.21 | 72.39 | 71.78 | 61.70 | 56.26 | 58.81 | 61.54 | 62.47 | 61.93 | 65.52 | 71.30 | 68.33 |
| SSED-ASTE | 71.15 | 69.85 | 70.49 | 60.76 | 51.13 | 56.08 | 52.30 | 60.95 | 61.60 | 67.50 | 69.28 | 68.36 |
| MBGCN | 67.92 | 75.18 | 71.37 | 59.96 | 57.86 | 58.89 | 62.25 | 63.92 | 63.07 | 63.76 | 71.35 | 67.34 |
| SA-Transformer | 70.76 | 65.85 | 68.22 | 61.28 | 49.98 | 54.44 | 62.82 | 68.31 | 60.48 | 72.01 | 62.87 | 67.13 |
| AE-GCN | 71.37 | 73.02 | 71.70 | 60.08 | 59.23 | 62.63 | 61.86 | 62.24 | 67.44 | 73.29 | 70.34 | |
| CONTRASTE | 73.60 | 74.00 | 64.20 | 61.70 | 65.30 | 66.10 | 72.20 | 74.20 | ||||
| SAAG | 70.75 | 73.30 | 62.63 | 56.88 | 59.62 | 61.51 | 62.26 | 61.38 | 69.26 | 71.51 | 70.37 | |
| DRN | 75.24 | 64.49 | 69.45 | 66.99 | 52.61 | 58.94 | 68.61 | 55.47 | 61.34 | 73.30 | 64.42 | 68.57 |
| BDTF | 75.53 | 73.24 | 65.78 | 55.97 | 61.74 | 63.71 | 71.44 | 73.13 | 72.27 | |||
| MVLF-SL | 77.58 | 72.43 | 74.92 | 72.92 | 56.74 | 63.82 | 72.08 | 64.94 | 68.32 | 72.96 | 75.09 | |
| 模型 | 不同数据集上的F1分数 | |||
|---|---|---|---|---|
| 14res | 14lap | 15res | 16res | |
| MVLF-SL | 74.92 | 63.82 | 68.32 | 74.01 |
| w/o SL | 73.79 | 63.00 | 66.07 | 71.97 |
| w/o MVLF | 72.13 | 61.74 | 66.29 | 72.91 |
| w/o MVLF&SL | 73.65 | 61.56 | 65.84 | 72.35 |
| w/o PLU | 73.68 | 62.47 | 67.72 | 73.24 |
| w/o BA | 74.20 | 62.53 | 66.36 | 72.75 |
Tab.3 Ablation experimental results
| 模型 | 不同数据集上的F1分数 | |||
|---|---|---|---|---|
| 14res | 14lap | 15res | 16res | |
| MVLF-SL | 74.92 | 63.82 | 68.32 | 74.01 |
| w/o SL | 73.79 | 63.00 | 66.07 | 71.97 |
| w/o MVLF | 72.13 | 61.74 | 66.29 | 72.91 |
| w/o MVLF&SL | 73.65 | 61.56 | 65.84 | 72.35 |
| w/o PLU | 73.68 | 62.47 | 67.72 | 73.24 |
| w/o BA | 74.20 | 62.53 | 66.36 | 72.75 |
| 模型 | 不同数据集上的F1分数 | |||
|---|---|---|---|---|
| 14res | 14lap | 15res | 16res | |
| MVLF-SL(GCN) | 74.92 | 63.82 | 68.32 | 74.01 |
| MVLF-SL(GAT) | 73.95 | 61.58 | 67.45 | 72.89 |
Tab.4 Ablation experimental results of GCN structure
| 模型 | 不同数据集上的F1分数 | |||
|---|---|---|---|---|
| 14res | 14lap | 15res | 16res | |
| MVLF-SL(GCN) | 74.92 | 63.82 | 68.32 | 74.01 |
| MVLF-SL(GAT) | 73.95 | 61.58 | 67.45 | 72.89 |
| [1] | PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2015 task 12: aspect based sentiment analysis[C]// Proceedings of the 9th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2015: 486-495. |
| [2] | WANG R, LIU C, ZHAO R, et al. Post-processing method with aspect term error correction for enhancing aspect term extraction[J]. Applied Intelligence, 2022, 52(14): 15751-15763. |
| [3] | WU Z, ZHAO F, DAI X Y, et al. Latent opinions transfer network for target-oriented opinion words extraction[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 9298-9305. |
| [4] | WANG K, SHEN W, YANG Y, et al. Relational graph attention network for aspect-based sentiment analysis[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3229-3238. |
| [5] | PENG H, XU L, BING L, et al. Knowing what, how and why: a near complete solution for aspect-based sentiment analysis[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 8600-8607. |
| [6] | CHEN S, WANG Y, LIU J, et al. Bidirectional machine reading comprehension for aspect sentiment triplet extraction[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 12666-12674. |
| [7] | MAO Y, SHEN Y, YU C, et al. A joint training dual-MRC framework for aspect based sentiment analysis[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 13543-13551. |
| [8] | WU Z, YING C, ZHAO F, et al. Grid tagging scheme for aspect-oriented fine-grained opinion extraction[C]// Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg: ACL, 2020: 2576-2585. |
| [9] | CHEN H, ZHAI Z, FENG F, et al. Enhanced multi-channel graph convolutional network for aspect sentiment triplet extraction[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 2974-2985. |
| [10] | SHI X, HU M, DENG J, et al. Integration of multi-branch GCNs enhancing aspect sentiment triplet extraction[J]. Applied Sciences, 2023, 13(7): 4345-4350. |
| [11] | LI Y, HE Q, ZHANG D. Dual graph convolutional networks integrating affective knowledge and position information for aspect sentiment triplet extraction[J]. Frontiers in Neurorobotics, 2023, 17: No.1193011. |
| [12] | XU L, CHIA Y K, BING L. Learning span-level interactions for aspect sentiment triplet extraction[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 4755-4766 . |
| [13] | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
| [14] | ZHANG C, LI Q, SONG D. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 4568-4578. |
| [15] | HUANG L, SUN X, LI S, et al. Syntax-aware graph attention network for aspect-level sentiment classification[C]// Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg: ACL, 2020: 799-810. |
| [16] | ZHOU T, SHEN Y, CHEN K, et al. Hierarchical dual graph convolutional network for aspect-based sentiment analysis[J]. Knowledge-Based Systems, 2023, 276: No.110740. |
| [17] | SUN K, ZHANG R, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 5679-5688. |
| [18] | CAMBRIA E, LIU Q, DECHERCHI S, et al. SenticNet 7: a commonsense-based neurosymbolic AI framework for explainable sentiment analysis[C]// Proceedings of the 13th Language Resources and Evaluation Conference. Stroudsburg: ACL, 2022: 3829-3839. |
| [19] | ZHANG Y, YANG Y, LI Y, et al. Boundary-driven table-filling for aspect sentiment triplet extraction[C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2022: 6485-6498. |
| [20] | PENG H, XU L, BING L,et al. Knowing what, how and why: a near complete solution for aspect-based sentiment analysis [C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020:8600-8607. |
| [21] | XU L, LI H, LU W, et al. Position-aware tagging for aspect sentiment triplet extraction[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 2339-2349. |
| [22] | 李言博,何庆,陆顺意. 融合语义和句法信息的方面情感三元组抽取[J]. 计算机应用, 2024, 44(10): 3275-3280. |
| LI Y B, HE Q, LU S Y. Aspect sentiment triplet extraction integrating semantic and syntactic information[J]. Journal of Computer Applications, 2024, 44(10): 3275-3280. | |
| [23] | YUAN L, WANG J, YU L C, et al. Encoding syntactic information into Transformers for aspect-based sentiment triplet extraction[J]. IEEE Transactions on Affective Computing, 2024, 15(2): 722-735. |
| [24] | 高龙涛,李娜娜. 基于方面感知注意力增强的方面情感三元组抽取[J]. 计算机应用, 2024, 44(4): 1049-1057. |
| GAO L T, LI N N. Aspect sentiment triplet extraction based on aspect-aware attention enhancement[J]. Journal of Computer Applications, 2024, 44(4): 1049-1057. | |
| [25] | MUKHERJEE R, KANNEN N, PANDEY S K, et al. CONTRASTE: supervised contrastive pre-training with aspect-based prompts for aspect sentiment triplet extraction[C]// Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg: ACL, 2023: 12065-12080. |
| [26] | SUN X, QI J, ZHU Z, et al. SenticNet and abstract meaning representation driven attention-gate semantic framework for aspect sentiment triplet extraction[J]. Engineering Applications of Artificial Intelligence, 2025, 139(Pt B): No.109625. |
| [27] | XIA T, SUN X, YANG Y, et al. A dual relation-encoder network for aspect sentiment triplet extraction[J]. Neurocomputing, 2024, 597: No.128064. |
| [1] | Chao SHI, Yuxin ZHOU, Qian FU, Wanyu TANG, Ling HE, Yuanyuan LI. Action recognition algorithm for ADHD patients using skeleton and 3D heatmap [J]. Journal of Computer Applications, 2025, 45(9): 3036-3044. |
| [2] | Ziliang LI, Guangli ZHU, Yulei ZHANG, Jiajia LIU, Yixuan JIAO, Shunxiang ZHANG. Aspect-based sentiment analysis model integrating syntax and sentiment knowledge [J]. Journal of Computer Applications, 2025, 45(6): 1724-1731. |
| [3] | Quan WANG, Qixiang LU, Pei SHI. Multi-graph diffusion attention network for traffic flow prediction [J]. Journal of Computer Applications, 2025, 45(5): 1472-1479. |
| [4] | Yufei LONG, Yuchen MOU, Ye LIU. Multi-source data representation learning model based on tensorized graph convolutional network and contrastive learning [J]. Journal of Computer Applications, 2025, 45(5): 1372-1378. |
| [5] | Man CHEN, Xiaojun YANG, Huimin YANG. Pedestrian trajectory prediction based on graph convolutional network and endpoint induction [J]. Journal of Computer Applications, 2025, 45(5): 1480-1487. |
| [6] | Weichao DANG, Chujun SONG, Gaimei GAO, Chunxia LIU. Multi-behavior recommendation based on cascading residual graph convolutional network [J]. Journal of Computer Applications, 2025, 45(4): 1223-1231. |
| [7] | Kun FU, Shicong YING, Tingting ZHENG, Jiajie QU, Jingyuan CUI, Jianwei LI. Graph data augmentation method for few-shot node classification [J]. Journal of Computer Applications, 2025, 45(2): 392-402. |
| [8] | Yuqi ZHANG, Ying SHA. Chinese semantic error recognition model based on hierarchical information enhancement [J]. Journal of Computer Applications, 2025, 45(12): 3771-3778. |
| [9] | Jinghua ZHAO, Zhu ZHANG, Xiting LYU, Huidan LIN. Multiscale information diffusion prediction model based on hypergraph neural network [J]. Journal of Computer Applications, 2025, 45(11): 3529-3539. |
| [10] | Mengnan XU, Hailiang YE, Feilong CAO. Neighborhood-attention and topology-aware graph convolution method for robust point cloud registration [J]. Journal of Computer Applications, 2025, 45(11): 3573-3582. |
| [11] | Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems [J]. Journal of Computer Applications, 2024, 44(9): 2855-2862. |
| [12] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
| [13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
| [14] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. |
| [15] | Longtao GAO, Nana LI. Aspect sentiment triplet extraction based on aspect-aware attention enhancement [J]. Journal of Computer Applications, 2024, 44(4): 1049-1057. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||