Journal of Computer Applications ›› 2026, Vol. 46 ›› Issue (1): 289-296.DOI: 10.11772/j.issn.1001-9081.2025010019
• Frontier and comprehensive applications • Previous Articles Next Articles
Ning CAO, Xin WEN, Yanrong HAO, Rui CAO(
)
Received:2025-01-07
Revised:2025-04-17
Accepted:2025-04-18
Online:2026-01-10
Published:2026-01-10
Contact:
Rui CAO
About author:CAO Ning, born in 2000, M. S. candidate. Her research interests include brain science, deep learning.Supported by:通讯作者:
曹锐
作者简介:曹柠(2000—),女,山西临汾人,硕士研究生,主要研究方向:脑科学、深度学习基金资助:CLC Number:
Ning CAO, Xin WEN, Yanrong HAO, Rui CAO. Lightweight motor imagery electroencephalogram decoding neural network with multi-domain feature fusion[J]. Journal of Computer Applications, 2026, 46(1): 289-296.
曹柠, 温昕, 郝雁嵘, 曹锐. 多域特征融合的轻量化运动想象脑电信号解码神经网络[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 289-296.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2025010019
| 模块 | 输出大小 | 激活函数 |
|---|---|---|
| 频域特征提取 | (20, 187, 15) | ELU |
| 时域特征提取 | (20, 187, 15) | ELU |
| SE注意力 | (20, 31, 15) | ELU |
| 时频特征融合 | (20, 7, 6) | ELU |
Tab. 1 Output information of the network modules
| 模块 | 输出大小 | 激活函数 |
|---|---|---|
| 频域特征提取 | (20, 187, 15) | ELU |
| 时域特征提取 | (20, 187, 15) | ELU |
| SE注意力 | (20, 31, 15) | ELU |
| 时频特征融合 | (20, 7, 6) | ELU |
| 超参数 | 设置 |
|---|---|
| 残差块(L) | 2 |
| 卷积核尺寸(Ks) | 5 |
| 滤波器器 | 12 |
| Dropout | 0.3 |
Tab. 2 TCN hyperparameter setting
| 超参数 | 设置 |
|---|---|
| 残差块(L) | 2 |
| 卷积核尺寸(Ks) | 5 |
| 滤波器器 | 12 |
| Dropout | 0.3 |
| 数据集 | 通道数 | 通道位置 | 采样频率/Hz | 下采样/Hz |
|---|---|---|---|---|
| BCI 2a[ | 20 | FC3, FC1, FCz, FC2, FC4,C5,C3,C1, Cz,C2,C4,C6, CP3, CP1, CPz, CP2, CP4,P1, Pz,P2 | 250 | 100 |
| SMR-BCI[ | 15 | FCC3, FCCz, FCC4,C5h,C3,C3h,C1h, Cz,C2h,C4h,C4,C6h, CCP3, CCPz, CCP4 | 512 | 100 |
| OpenBMI[ | 20 | FC5, FC3, FC1, FC2, FC4, FC6,C5,C3,C1, Cz,C2,C4,C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6 | 1 000 | 100 |
Tab. 3 Information on three datasets
| 数据集 | 通道数 | 通道位置 | 采样频率/Hz | 下采样/Hz |
|---|---|---|---|---|
| BCI 2a[ | 20 | FC3, FC1, FCz, FC2, FC4,C5,C3,C1, Cz,C2,C4,C6, CP3, CP1, CPz, CP2, CP4,P1, Pz,P2 | 250 | 100 |
| SMR-BCI[ | 15 | FCC3, FCCz, FCC4,C5h,C3,C3h,C1h, Cz,C2h,C4h,C4,C6h, CCP3, CCPz, CCP4 | 512 | 100 |
| OpenBMI[ | 20 | FC5, FC3, FC1, FC2, FC4, FC6,C5,C3,C1, Cz,C2,C4,C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6 | 1 000 | 100 |
| 网络 | BCI 2a | SMR-BCI | OpenBMI |
|---|---|---|---|
| DeepConvNet[ | 152 693 | 150 302 | 151 027 |
| EEGNet[ | 5 162 | 5 082 | 5 162 |
| EEG-TCNet[ | 6 366 | 6 286 | 6 366 |
| TCNet-Fusion[ | 10 487 | 10 238 | 10 478 |
| EEG Conformer[ | 458 226 | 450 226 | 458 226 |
| MDLNN | 6 870 | 5 690 | 6 870 |
Tab. 4 Comparison of parameter quantities of different networks on three datasets
| 网络 | BCI 2a | SMR-BCI | OpenBMI |
|---|---|---|---|
| DeepConvNet[ | 152 693 | 150 302 | 151 027 |
| EEGNet[ | 5 162 | 5 082 | 5 162 |
| EEG-TCNet[ | 6 366 | 6 286 | 6 366 |
| TCNet-Fusion[ | 10 487 | 10 238 | 10 478 |
| EEG Conformer[ | 458 226 | 450 226 | 458 226 |
| MDLNN | 6 870 | 5 690 | 6 870 |
| 网络 | BCI 2a | SMR-BCI | OpenBMI |
|---|---|---|---|
| DeepConvNet[ | 0.57 | 0.55 | 0.53 |
| EEGNet[ | 0.60 | 0.62 | 0.53 |
| EEG-TCNet[ | 0.63 | 0.63 | 0.56 |
| TCNet-Fusion[ | 0.67 | 0.64 | 0.62 |
| EEG Conformer[ | 0.65 | 0.65 | 0.60 |
| MDLNN | 0.70 | 0.66 | 0.59 |
Tab. 5 Comparison of K value of different networks on three datasets
| 网络 | BCI 2a | SMR-BCI | OpenBMI |
|---|---|---|---|
| DeepConvNet[ | 0.57 | 0.55 | 0.53 |
| EEGNet[ | 0.60 | 0.62 | 0.53 |
| EEG-TCNet[ | 0.63 | 0.63 | 0.56 |
| TCNet-Fusion[ | 0.67 | 0.64 | 0.62 |
| EEG Conformer[ | 0.65 | 0.65 | 0.60 |
| MDLNN | 0.70 | 0.66 | 0.59 |
频域 特征提取 | 时域 特征提取 | SE 注意力 | 混合损失 | 分类 准确率/% |
|---|---|---|---|---|
| √ | √ | √ | 68.95 | |
| √ | √ | √ | 67.27 | |
| √ | √ | √ | 71.73 | |
| √ | √ | √ | 61.16 | |
| √ | √ | √ | √ | 74.78 |
Tab. 6 Classification results of different ablation experimental settings on BCI 2a dataset
频域 特征提取 | 时域 特征提取 | SE 注意力 | 混合损失 | 分类 准确率/% |
|---|---|---|---|---|
| √ | √ | √ | 68.95 | |
| √ | √ | √ | 67.27 | |
| √ | √ | √ | 71.73 | |
| √ | √ | √ | 61.16 | |
| √ | √ | √ | √ | 74.78 |
| 残差块数 | 卷积核大小 | 分类准确率/% |
|---|---|---|
| 1 | 3 | 60.79 |
| 5 | 60.77 | |
| 2 | 3 | 70.94 |
| 5 | 74.78 | |
| 3 | 3 | 70.13 |
| 5 | 71.62 |
Tab. 7 TCN hyperparameter performance comparison
| 残差块数 | 卷积核大小 | 分类准确率/% |
|---|---|---|
| 1 | 3 | 60.79 |
| 5 | 60.77 | |
| 2 | 3 | 70.94 |
| 5 | 74.78 | |
| 3 | 3 | 70.13 |
| 5 | 71.62 |
| 注意力 | BCI 2a | SMR-BCI | OpenBMI |
|---|---|---|---|
| NoAttention | 71.73 | 70.20 | 65.07 |
| DANet | 73.35 | 70.06 | 65.17 |
| CBAM | 73.02 | 70.61 | 65.06 |
| SE | 74.78 | 71.93 | 65.40 |
Tab. 8 Comparison of classification accuracy of different attentions on three datasets
| 注意力 | BCI 2a | SMR-BCI | OpenBMI |
|---|---|---|---|
| NoAttention | 71.73 | 70.20 | 65.07 |
| DANet | 73.35 | 70.06 | 65.17 |
| CBAM | 73.02 | 70.61 | 65.06 |
| SE | 74.78 | 71.93 | 65.40 |
| [1] | LI H, CHEN H, JIA Z, et al. A parallel multi-scale time-frequency block convolutional neural network based on channel attention module for motor imagery classification [J]. Biomedical Signal Processing and Control, 2023, 79(Pt 1): No.104066. |
| [2] | DONG Y, WEN X, GAO F, et al. Subject-independent EEG classification of motor imagery based on dual-branch feature fusion [J]. Brain Sciences, 2023, 13(7): No.1109. |
| [3] | SONG Y, ZHENG Q, LIU B, et al. EEG Conformer: convolutional Transformer for EEG decoding and visualization [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 710-719. |
| [4] | TAO W, WANG Z, WONG C M, et al. ADFCNN: attention-based dual-scale fusion convolutional neural network for motor imagery brain-computer interface [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32: 154-165. |
| [5] | SCHIRRMEISTER R T, SPRINGENBERG J T, FIEDERER L D J, et al. Deep learning with convolutional neural networks for EEG decoding and visualization [J]. Human Brain Mapping, 2017, 38(11): 5391-5420. |
| [6] | LAWHERN V J, SOLON A J, WAYTOWICH N R, et al. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces [J]. Journal of Neural Engineering, 2018, 15(5): No.056013. |
| [7] | LEE H K, MYOUNG J S, CHOI Y S. A lightweight end-to-end neural networks for decoding of motor imagery brain signal [C]// Proceedings of the 13th International Conference on Ubiquitous and Future Networks. Piscataway: IEEE, 2022: 411-413. |
| [8] | FU R, WANG Z, WANG S, et al. EEGNet-MSD: a sparse convolutional neural network for efficient EEG-based intent decoding [J]. IEEE Sensors Journal, 2023, 23(17): 19684-19691. |
| [9] | IZZUDDIN T A, SAFRI N M, OTHMAN M A. Compact Convolutional Neural Network (CNN) based on SincNet for end-to-end motor imagery decoding and analysis [J]. Biocybernetics and Biomedical Engineering, 2021, 41(4): 1629-1645. |
| [10] | BRIA A, MARROCCO C, TORTORELLA F. Sinc-based convolutional neural networks for EEG-BCI-based motor imagery classification [C]// Proceedings of the 2021 International Conference on Pattern Recognition, LNCS 12661. Cham: Springer, 2021: 526-535. |
| [11] | RAVANELLI M, BENGIO Y. Speaker recognition from raw waveform with SincNet [C]// Proceedings of the 2018 IEEE Spoken Language Technology Workshop. Piscataway: IEEE, 2018: 1021-1028. |
| [12] | INGOLFSSON T M, HERSCHE M, WANG X, et al. EEG-TCNet: an accurate temporal convolutional network for embedded motor-imagery brain-machine interfaces [C]// Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2020: 2958-2965. |
| [13] | TANGERMANN M, MÜLLER K R, AERTSEN A, et al. Review of the BCI competition IV [J]. Frontiers in Neuroscience, 2012, 6: No.55. |
| [14] | AUTTHASAN P, CHAISAEN R, SUDHAWIYANGKUL T, et al. MIN2Net: end-to-end multi-task learning for subject-independent motor imagery EEG classification [J]. IEEE Transactions on Biomedical Engineering, 2022, 69(6): 2105-2118. |
| [15] | LEE M H, KWON O Y, KIM Y J, et al. EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy [J]. GigaScience, 2019, 8(5): No.giz002. |
| [16] | MUSALLAM Y K, AlFASSAM N I, MUHAMMAD G, et al. Electroencephalography-based motor imagery classification using temporal convolutional network fusion [J]. Biomedical Signal Processing and Control, 2021, 69: No.102826. |
| [17] | CHEN S, LI N, KONG X, et al. Electroencephalography-based motor imagery classification using multi-scale feature fusion and adaptive lasso [J]. Big Data and Cognitive Computing, 2024, 8(12): No.169. |
| [1] | Tiantong ZHOU, Yanqi ZHENG, Tao WEI, Yakang DAI, Ling ZOU. Cognitive load EEG recognition model integrating variational graph autoencoder and local-global graph network [J]. Journal of Computer Applications, 2025, 45(6): 1849-1857. |
| [2] | Handa MA, Yadong WU. Multi-domain spatiotemporal hierarchical graph neural network for air quality prediction [J]. Journal of Computer Applications, 2025, 45(2): 444-452. |
| [3] | Min HE, Tianjian LUO. Multi-stage distribution adaptation model for cross-subject motor imagery EEG decoding [J]. Journal of Computer Applications, 2025, 45(12): 4064-4072. |
| [4] | Xuan CAO, Tianjian LUO. Dynamic multi-domain adversarial learning method for cross-subject motor imagery EEG signals [J]. Journal of Computer Applications, 2024, 44(2): 645-653. |
| [5] | Tian CHEN, Conghu CAI, Xiaohui YUAN, Beibei LUO. Multimodal emotion recognition method based on multiscale convolution and self-attention feature fusion [J]. Journal of Computer Applications, 2024, 44(2): 369-376. |
| [6] | Siqi YANG, Tianjian LUO, Xuanhui YAN, Guangju YANG. Transfer kernel learning method based on spatial features for motor imagery EEG [J]. Journal of Computer Applications, 2024, 44(11): 3354-3363. |
| [7] | Chunlan ZHAN, Anzhi WANG, Minghui WANG. Camouflage object segmentation method based on channel attention and edge fusion [J]. Journal of Computer Applications, 2023, 43(7): 2166-2172. |
| [8] | Yun ZHANG, Shuying WANG, Qing ZHENG, Haizhu ZHANG. Lightweight algorithm of 3D mesh model for preserving detailed geometric features [J]. Journal of Computer Applications, 2023, 43(4): 1226-1232. |
| [9] | Lubao LI, Tian CHEN, Fuji REN, Beibei LUO. Bimodal emotion recognition method based on graph neural network and attention [J]. Journal of Computer Applications, 2023, 43(3): 700-705. |
| [10] | Jing QIN, Fali SUN, Fang HUI, Zumin WANG, Bing GAO, Changqing JI. Review of key technology and application of wearable electroencephalogram device [J]. Journal of Computer Applications, 2022, 42(4): 1029-1035. |
| [11] | HUO Shoujun, HAO Yan, SHI Huiyu, DONG Yanqing, CAO Rui. Pattern recognition of motor imagery EEG based on deep convolutional network [J]. Journal of Computer Applications, 2021, 41(4): 1042-1048. |
| [12] | Fei LUO, Pengfei LIU, Yuan LUO, Simeng ZHU. Motor imagery EEG feature extraction method based on multi-feature fusion [J]. Journal of Computer Applications, 2020, 40(2): 616-620. |
| [13] | HU Zhangfang, ZHANG Li, HUANG Lijia, LUO Yuan. Motor imagery electroencephalogram signal recognition method based on convolutional neural network in time-frequency domain [J]. Journal of Computer Applications, 2019, 39(8): 2480-2483. |
| [14] | HU Min, LI Chong, LU Rongrong, HUANG Hongcheng. Performance analysis of motor imagery training based on 3D visual guidance [J]. Journal of Computer Applications, 2018, 38(3): 836-841. |
| [15] | WANG Ruofan, LIU Jing, WANG Jiang, YU Haitao, CAO Yibin. Analysis algorithm of electroencephalogram signals for epilepsy diagnosis based on power spectral density and limited penetrable visibility graph [J]. Journal of Computer Applications, 2017, 37(1): 175-182. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||