《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (9): 2940-2947.DOI: 10.11772/j.issn.1001-9081.2023030381
收稿日期:
2023-04-07
修回日期:
2023-07-03
接受日期:
2023-07-06
发布日期:
2023-09-10
出版日期:
2023-09-10
通讯作者:
马巧梅
作者简介:
李众(1974—),男,山西忻州人,副教授,博士,CCF会员,主要研究方向:图形图像处理、算法分析基金资助:
Zhong LI1,2, Yajing WANG1, Qiaomei MA1,2()
Received:
2023-04-07
Revised:
2023-07-03
Accepted:
2023-07-06
Online:
2023-09-10
Published:
2023-09-10
Contact:
Qiaomei MA
About author:
LI Zhong, born in 1974, Ph. D., associate professor. His research interests include graphics and image processing, algorithm analysis.Supported by:
摘要:
为解决现有医学图像超分辨率重建中存在的图像细节模糊、全局信息利用不充分等问题,提出一种基于空洞卷积与改进的混合注意力机制的医学图像超分辨率重建算法。首先,将深度可分离卷积与空洞卷积相结合,使用不同大小的感受野对图像进行不同尺度的特征提取,从而增强特征表达能力;其次,引入边缘通道注意力机制,在提取图像高频特征的同时融合边缘信息,从而提高模型的重建精度;再次,混合L1损失与感知损失函数作为整体损失函数,使重建后的图像效果更符合人类视觉感观。实验结果表明,在放大因子为3时,与基于卷积神经网络的图像超分辨率(SRCNN)算法、VDSR(Very Deep convolutional networks Super-Resolution)相比,所提算法的峰值信噪比(PSNR)平均提高了11.29%与7.85%;结构相似性(SSIM)平均提高了5.25%和2.44%。可见,所提算法能增强医学图像的效果与纹理特征,且对图像整体结构还原更加完整。
中图分类号:
李众, 王雅婧, 马巧梅. 基于空洞卷积的医学图像超分辨率重建算法[J]. 计算机应用, 2023, 43(9): 2940-2947.
Zhong LI, Yajing WANG, Qiaomei MA. Super-resolution reconstruction algorithm of medical images based on dilated convolution[J]. Journal of Computer Applications, 2023, 43(9): 2940-2947.
模块 | PSNR/dB | SSIM |
---|---|---|
DSC | 29.02 | 0.796 3 |
DSC+CA | 30.94 | 0.883 2 |
DSC+SAM | 29.81 | 0.800 0 |
DSC+ECAM | 31.02 | 0.879 5 |
DSC+ISAM | 30.27 | 0.877 1 |
DSC+ECAM+ISAM | 31.35 | 0.901 3 |
表1 不同模块的重建性能比较
Tab. 1 Comparison of reconstruction performance of different modules
模块 | PSNR/dB | SSIM |
---|---|---|
DSC | 29.02 | 0.796 3 |
DSC+CA | 30.94 | 0.883 2 |
DSC+SAM | 29.81 | 0.800 0 |
DSC+ECAM | 31.02 | 0.879 5 |
DSC+ISAM | 30.27 | 0.877 1 |
DSC+ECAM+ISAM | 31.35 | 0.901 3 |
测试集 | 算法 | 不同放大倍数下的PSNR/dB | 不同放大倍数下的SSIM | ||||
---|---|---|---|---|---|---|---|
2倍 | 3倍 | 4倍 | 2倍 | 3倍 | 4倍 | ||
测试集A | Bicubic | 24.88 | 22.97 | 22.15 | 0.789 5 | 0.705 0 | 0.609 8 |
SRCNN | 28.16 | 26.51 | 26.70 | 0.860 0 | 0.794 5 | 0.795 8 | |
FSRCNN | 26.69 | 24.34 | 24.71 | 0.803 5 | 0.693 7 | 0.705 4 | |
VDSR | 30.12 | 27.56 | 27.78 | 0.898 0 | 0.824 5 | 0.818 5 | |
RCAN | 30.44 | 28.47 | 27.93 | 0.891 2 | 0.835 1 | 0.813 7 | |
文献[ | 30.07 | 29.10 | 27.62 | 0.887 1 | 0.821 4 | 0.815 4 | |
FAWDN | 31.11 | 28.95 | 28.44 | 0.923 1 | 0.832 2 | 0.819 1 | |
MIRN | 30.57 | 29.03 | 27.87 | 0.895 7 | 0.825 0 | 0.810 6 | |
本文算法 | 31.35 | 29.31 | 28.74 | 0.901 3 | 0.847 8 | 0.816 9 | |
测试集B | Bicubic | 30.15 | 27.41 | 24.93 | 0.789 5 | 0.808 8 | 0.719 2 |
SRCNN | 34.05 | 30.07 | 27.43 | 0.860 0 | 0.864 8 | 0.784 4 | |
FSRCNN | 29.51 | 26.21 | 24.80 | 0.803 5 | 0.749 5 | 0.689 4 | |
VDSR | 36.20 | 30.80 | 28.06 | 0.898 0 | 0.879 6 | 0.806 3 | |
RCAN | 35.42 | 31.54 | 30.64 | 0.902 5 | 0.863 6 | 0.827 2 | |
文献[ | 35.92 | 33.21 | 30.01 | 0.910 0 | 0.891 0 | 0.829 5 | |
FAWDN | 35.37 | 32.74 | 30.58 | 0.915 2 | 0.890 2 | 0.815 0 | |
MIRN | 35.58 | 33.43 | 30.29 | 0.903 8 | 0.887 6 | 0.828 8 | |
本文算法 | 35.83 | 33.68 | 30.78 | 0.901 3 | 0.897 5 | 0.831 1 |
表2 不同算法的PSNR/SSIM值比较
Tab. 2 Comparison of PSNR/SSIM values of different algorithms
测试集 | 算法 | 不同放大倍数下的PSNR/dB | 不同放大倍数下的SSIM | ||||
---|---|---|---|---|---|---|---|
2倍 | 3倍 | 4倍 | 2倍 | 3倍 | 4倍 | ||
测试集A | Bicubic | 24.88 | 22.97 | 22.15 | 0.789 5 | 0.705 0 | 0.609 8 |
SRCNN | 28.16 | 26.51 | 26.70 | 0.860 0 | 0.794 5 | 0.795 8 | |
FSRCNN | 26.69 | 24.34 | 24.71 | 0.803 5 | 0.693 7 | 0.705 4 | |
VDSR | 30.12 | 27.56 | 27.78 | 0.898 0 | 0.824 5 | 0.818 5 | |
RCAN | 30.44 | 28.47 | 27.93 | 0.891 2 | 0.835 1 | 0.813 7 | |
文献[ | 30.07 | 29.10 | 27.62 | 0.887 1 | 0.821 4 | 0.815 4 | |
FAWDN | 31.11 | 28.95 | 28.44 | 0.923 1 | 0.832 2 | 0.819 1 | |
MIRN | 30.57 | 29.03 | 27.87 | 0.895 7 | 0.825 0 | 0.810 6 | |
本文算法 | 31.35 | 29.31 | 28.74 | 0.901 3 | 0.847 8 | 0.816 9 | |
测试集B | Bicubic | 30.15 | 27.41 | 24.93 | 0.789 5 | 0.808 8 | 0.719 2 |
SRCNN | 34.05 | 30.07 | 27.43 | 0.860 0 | 0.864 8 | 0.784 4 | |
FSRCNN | 29.51 | 26.21 | 24.80 | 0.803 5 | 0.749 5 | 0.689 4 | |
VDSR | 36.20 | 30.80 | 28.06 | 0.898 0 | 0.879 6 | 0.806 3 | |
RCAN | 35.42 | 31.54 | 30.64 | 0.902 5 | 0.863 6 | 0.827 2 | |
文献[ | 35.92 | 33.21 | 30.01 | 0.910 0 | 0.891 0 | 0.829 5 | |
FAWDN | 35.37 | 32.74 | 30.58 | 0.915 2 | 0.890 2 | 0.815 0 | |
MIRN | 35.58 | 33.43 | 30.29 | 0.903 8 | 0.887 6 | 0.828 8 | |
本文算法 | 35.83 | 33.68 | 30.78 | 0.901 3 | 0.897 5 | 0.831 1 |
算法 | 运行时间/s | 算法 | 运行时间/s |
---|---|---|---|
Bicubic | 1.071 | 文献[ | 3.056 |
SRCNN | 1.654 | FAWDN | 5.631 |
FSRCNN | 1.241 | MIRN | 4.944 |
VDSR | 2.062 | 本文算法 | 3.527 |
RCAN | 2.453 |
表3 不同算法重建图像的平均用时
Tab. 3 Average time spent to reconstruct images bydifferent algorithms
算法 | 运行时间/s | 算法 | 运行时间/s |
---|---|---|---|
Bicubic | 1.071 | 文献[ | 3.056 |
SRCNN | 1.654 | FAWDN | 5.631 |
FSRCNN | 1.241 | MIRN | 4.944 |
VDSR | 2.062 | 本文算法 | 3.527 |
RCAN | 2.453 |
1 | CHRISTENSEN-JEFFRIES K, COUTURE O, DAYTON P A, et al. Super-resolution ultrasound imaging[J]. Ultrasound in Medicine and Biology, 2020, 46(4): 865-891. 10.1016/j.ultrasmedbio.2019.11.013 |
2 | BÄTZ M, EICHENSEER A, SEILER J, et al. Hybrid super-resolution combining example-based single-image and interpolation-based multi-image reconstruction approaches[C]// Proceeding of the 2015 IEEE International Conference on Image Processing. Piscataway: IEEE, 2015: 58-62. 10.1109/icip.2015.7350759 |
3 | 李现国,冯欣欣,李建雄. 多尺度残差网络的单幅图像超分辨率重建[J]. 计算机工程与应用, 2021, 57(7):215-221. 10.3778/j.issn.1002-8331.2001-0073 |
LI X G, FENG X X, LI J X. Single image super-resolution reconstruction based on multi-scale residual network[J]. Computer Engineering and Applications, 2021, 57(7): 215-221. 10.3778/j.issn.1002-8331.2001-0073 | |
4 | DONG C, LOY C C, HE K M,et al . Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38 (2) : 295-307. 10.1109/tpami.2015.2439281 |
5 | KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2016:1646-1654. 10.1109/cvpr.2016.182 |
6 | LIM B,SON S, KIM H,et al. Enhanced deep residual networks for single image super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE,2017:1132-1440. 10.1109/cvprw.2017.151 |
7 | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]∥ Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:1800-1807. 10.1109/cvpr.2017.195 |
8 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deep Lab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(4):834-848. 10.1109/tpami.2017.2699184 |
9 | 胡雪影,郭海儒,朱蓉. 基于混合深度卷积网络的图像超分辨率重建[J]. 计算机应用, 2020, 40(7):2069-2076. 10.11772/j.issn.1001-9081.2019122149 |
HU X Y, GUO H R, ZHU R. Image super-resolution reconstruction based on hybrid deep convolutional network[J]. Journal of Computer Applications, 2020, 40(7): 2069-2076. 10.11772/j.issn.1001-9081.2019122149 | |
10 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer,2018: 3-19. |
11 | 张晔,刘蓉,刘明,等. 基于多通道注意力机制的图像超分辨率重建网络[J]. 计算机应用,2022,42(5):1563-1569. 10.11772/j.issn.1001-9081.2021030498 |
ZHANG Y, LIU R, LIU M, et al. Image super-resolution reconstruction network based on multi-channel attention mechanism[J]. Journal of Computer Applications, 2022, 42(5): 1563-1569. 10.11772/j.issn.1001-9081.2021030498 | |
12 | ZHANG Y N, AN M Q. Deep learning-and transfer learning-based super resolution reconstruction from single medical image[J]. Journal of Healthcare Engineering, 2017, 2017:No.5859727. 10.1155/2017/5859727 |
13 | WANG Y K, TENG Q Z, HE X H, et al. CT-image of rock samples super resolution using 3D convolutional neural network[J]. Computers and Geosciences, 2019, 133: No.104314. 10.1016/j.cageo.2019.104314 |
14 | 高媛,王晓晨,秦品乐,等. 基于深度可分离卷积和宽残差网络的医学影像超分辨率重建[J]. 计算机应用, 2019, 39(9):2731-2737. 10.11772/j.issn.1001-9081.2019030413 |
GAO Y, WANG X C, QIN P L, et al. Medical image super-resolution reconstruction based on deep separable convolution and wide residual network[J]. Journal of Computer Applications, 2019, 39(9): 2731-2737. 10.11772/j.issn.1001-9081.2019030413 | |
15 | CHEN L H, YANG X M, JEON G, et al. A trusted medical image super-resolution method based on feedback adaptive weighted dense network[J]. Artificial Intelligence in Medicine,2020,106:No.101857. 10.1016/j.artmed.2020.101857 |
16 | QIU D F, ZHENG L X, ZHU J Q, et al. Multiple improved residual networks for medical image super-resolution[J]. Future Generation Computer Systems, 2021,116: 200-208. 10.1016/j.future.2020.11.001 |
17 | HE K M, ZHANG X Y, REN SH Q,et al.Deep residual learning for image recognition[C]// Proceeding of the 2016 IEEE Conference on Computer Vision and Pattern Recongnition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
18 | ENGEL J, KOLTUN V, CREMERS D. Direct sparse odometry [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(3):611-625. 10.1109/tpami.2017.2658577 |
19 | CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986,PAMI-8(6): 679-698. 10.1109/tpami.1986.4767851 |
20 | ZHAO H, GALLO O, FROSIO I, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 47-57. 10.1109/tci.2016.2644865 |
21 | SHEN H. Towards a mathematical understanding of the difficulty in learning with feedforward neural networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 811-820. 10.1109/cvpr.2018.00091 |
22 | ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]∥ Proceeding of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:586-595. 10.1109/cvpr.2018.00068 |
23 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2023-01-17]. . |
24 | KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153-1160. 10.1109/tassp.1981.1163711 |
25 | DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network [EB/OL]. [2022-12-18]. . 10.1007/978-3-319-46475-6_25 |
26 | ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 286-301. |
27 | 李俊珠,郑华,雷帅,等. 基于多尺度注意力残差网络的图像超分辨率重建[J]. 计算机系统应用, 2022, 31(5):324-330. |
LI J Z, ZHENG H, LEI S, et al. Image super-resolution reconstruction based on multi-scale attention residual network[J]. Computer Systems and Applications, 2022, 31(5):324-330. |
[1] | 王宏, 钱清, 王欢, 龙永. 融合大核注意力卷积的轻量化图像篡改定位算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2692-2699. |
[2] | 杨昊, 张轶. 基于上下文信息和多尺度融合重要性感知的特征金字塔网络算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2727-2734. |
[3] | 袁国龙, 张玉金, 刘洋. 基于残差反馈和自注意力的图像篡改取证网络[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2925-2931. |
[4] | 张秋余, 温永旺. 用于语音检索的三联体深度哈希方法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2910-2918. |
[5] | 崔雨萌, 王靖亚, 刘晓文, 闫尚义, 陶知众. 融合注意力和裁剪机制的通用文本分类模型[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2396-2405. |
[6] | 齐爱玲, 王宣淋. 基于中层细微特征提取与多尺度特征融合细粒度图像识别[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2556-2563. |
[7] | 金泽熙, 李磊, 刘继. 基于改进领域分离网络的迁移学习模型[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2382-2389. |
[8] | 刘源, 董永权, 贾瑞, 杨昊霖. 面向个性化课程推荐的分层分期注意力网络模型[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2358-2363. |
[9] | 梁美佳, 刘昕武, 胡晓鹏. 基于改进YOLOv3的列车运行环境图像小目标检测算法[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2611-2618. |
[10] | 王静红, 周志霞, 王辉, 李昊康. 双路自编码器的属性网络表示学习[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2338-2344. |
[11] | 姜钧舰, 刘达维, 刘逸凡, 任酉贵, 赵志滨. 基于孪生网络的小样本目标检测算法[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2325-2329. |
[12] | 段升位, 程欣宇, 王浩舟, 王飞. 基于改进的YOLOv5的大坝表面病害检测算法[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2619-2629. |
[13] | 魏远, 林彦, 郭晟楠, 林友芳, 万怀宇. 融合出发地与目的地时空相关性的城市区域间出租车需求预测[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2100-2106. |
[14] | 李忠雨, 孙浩东, 李娇. 轻量化篮球裁判手势识别算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2173-2181. |
[15] | 拓雨欣, 薛涛. 融合指针网络与关系嵌入的三元组联合抽取模型[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2116-2124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||