《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (2): 670-676.DOI: 10.11772/j.issn.1001-9081.2024030262
• 前沿与综合应用 • 上一篇
收稿日期:
2024-03-15
修回日期:
2024-04-27
接受日期:
2024-04-28
发布日期:
2024-05-29
出版日期:
2025-02-10
通讯作者:
叶冠华
作者简介:
李严(2002—),男,四川成都人,主要研究方向:金融科技、深度学习、数据挖掘基金资助:
Yan LI1, Guanhua YE2(), Yawen LI3, Meiyu LIANG2
Received:
2024-03-15
Revised:
2024-04-27
Accepted:
2024-04-28
Online:
2024-05-29
Published:
2025-02-10
Contact:
Guanhua YE
About author:
LI Yan, born in 2002. His research interests include financial technology, deep learning, data mining.Supported by:
摘要:
环境、社会及治理(ESG)指标是评估企业可持续发展的重要指标。现有的ESG评估体系存在覆盖范围狭窄、主观性强和时效性差等问题,因此,迫切需要研究能利用企业数据准确预测ESG指标的预测模型。针对企业数据中ESG关联特征存在信息丰度不一致的问题,提出一种基于丰度协调技术的企业ESG指标预测模型RCT (Richness Coordination Transformer),其中上游丰度协调模块通过自编码器协调异质丰度特征,从而提高下游模块的ESG指标预测性能。在真实数据集上的实验结果表明,与模型时间卷积网络(TCN)、长短期记忆(LSTM)网络、自注意力模型(Transformer)、极限梯度提升(XGBoost)和轻量级梯度提升机(LightGBM)相比,RCT模型在各项预测指标上均表现最优,验证了RCT模型在预测ESG指标上的有效性和优越性。
中图分类号:
李严, 叶冠华, 李雅文, 梁美玉. 基于丰度协调技术的企业ESG指标预测模型[J]. 计算机应用, 2025, 45(2): 670-676.
Yan LI, Guanhua YE, Yawen LI, Meiyu LIANG. Enterprise ESG indicator prediction model based on richness coordination technology[J]. Journal of Computer Applications, 2025, 45(2): 670-676.
数据集 | 特征数 | 数据维度(每年度) | 特征类别 | 信息丰度 |
---|---|---|---|---|
SBSD | 3 | 1 095 | 低丰度 | 1/365 |
EGOD | 1 | 160 | 低丰度 | 1/160 |
EFD | 31 | 31 | 高丰度 | 1 |
表1 数据集信息
Tab. 1 Dataset information
数据集 | 特征数 | 数据维度(每年度) | 特征类别 | 信息丰度 |
---|---|---|---|---|
SBSD | 3 | 1 095 | 低丰度 | 1/365 |
EGOD | 1 | 160 | 低丰度 | 1/160 |
EFD | 31 | 31 | 高丰度 | 1 |
模型 | 评分 准确率 | Score MAPE | 评级 准确率 | 评级宏观 召回率 | 评级宏观 精确率 |
---|---|---|---|---|---|
TCN | 0.591 | 0.057 | 0.801 | 0.603 | 0.665 |
LSTM | 0.588 | 0.059 | 0.809 | 0.562 | 0.693 |
Transformer | 0.597 | 0.058 | 0.784 | 0.579 | 0.731 |
XGBoost | 0.623 | 0.053 | 0.843 | 0.549 | 0.768 |
LightGBM | 0.644 | 0.049 | 0.843 | 0.551 | 0.765 |
RCT | 0.721 | 0.043 | 0.849 | 0.645 | 0.783 |
表2 不同模型的ESG指标预测能力比较结果
Tab. 2 Comparison results of ESG indicator prediction ability among different models
模型 | 评分 准确率 | Score MAPE | 评级 准确率 | 评级宏观 召回率 | 评级宏观 精确率 |
---|---|---|---|---|---|
TCN | 0.591 | 0.057 | 0.801 | 0.603 | 0.665 |
LSTM | 0.588 | 0.059 | 0.809 | 0.562 | 0.693 |
Transformer | 0.597 | 0.058 | 0.784 | 0.579 | 0.731 |
XGBoost | 0.623 | 0.053 | 0.843 | 0.549 | 0.768 |
LightGBM | 0.644 | 0.049 | 0.843 | 0.551 | 0.765 |
RCT | 0.721 | 0.043 | 0.849 | 0.645 | 0.783 |
注意力头数 | 评分准确率 | Score MAPE | 评级准确率 |
---|---|---|---|
1 | 0.711 | 0.042 | 0.846 |
2 | 0.713 | 0.041 | 0.845 |
3 | 0.719 | 0.042 | 0.848 |
4 | 0.721 | 0.043 | 0.849 |
5 | 0.716 | 0.043 | 0.846 |
6 | 0.712 | 0.043 | 0.846 |
表3 不同注意力头数的影响
Tab. 3 Influence of different attention heads
注意力头数 | 评分准确率 | Score MAPE | 评级准确率 |
---|---|---|---|
1 | 0.711 | 0.042 | 0.846 |
2 | 0.713 | 0.041 | 0.845 |
3 | 0.719 | 0.042 | 0.848 |
4 | 0.721 | 0.043 | 0.849 |
5 | 0.716 | 0.043 | 0.846 |
6 | 0.712 | 0.043 | 0.846 |
微调方法 | 评估指标 | |||
---|---|---|---|---|
LP | Adapter | 评分准确率 | Score MAPE | 评级准确率 |
× | × | 0.661 | 0.048 | 0.836 |
√ | × | 0.697 | 0.044 | 0.837 |
× | √ | 0.702 | 0.044 | 0.839 |
√ | √ | 0.721 | 0.043 | 0.849 |
表 4 微调方法对模型表现的影响
Tab. 4 Influence of fine-tuning methods on model performance
微调方法 | 评估指标 | |||
---|---|---|---|---|
LP | Adapter | 评分准确率 | Score MAPE | 评级准确率 |
× | × | 0.661 | 0.048 | 0.836 |
√ | × | 0.697 | 0.044 | 0.837 |
× | √ | 0.702 | 0.044 | 0.839 |
√ | √ | 0.721 | 0.043 | 0.849 |
模型构架 | 评估指标 | ||||
---|---|---|---|---|---|
RCM | PCAM | FM | 评分准确率 | Score MAPE | 评级准确率 |
× | × | √ | 0.597 | 0.058 | 0.784 |
× | √ | √ | 0.671 | 0.055 | 0.842 |
√ | √ | √ | 0.721 | 0.043 | 0.849 |
表5 丰度协调模块对模型表现的影响
Tab. 5 Influence of RCM on model performance
模型构架 | 评估指标 | ||||
---|---|---|---|---|---|
RCM | PCAM | FM | 评分准确率 | Score MAPE | 评级准确率 |
× | × | √ | 0.597 | 0.058 | 0.784 |
× | √ | √ | 0.671 | 0.055 | 0.842 |
√ | √ | √ | 0.721 | 0.043 | 0.849 |
1 | FRIEDE G, BUSCH T, BASSEN A. ESG and financial performance: aggregated evidence from more than 2000 empirical studies[J]. Journal of Sustainable Finance Investment, 2015, 5(4): 210-233. |
2 | DORFLEITNER G, HALBRITTER G, NGUYEN M. Measuring the level and risk of corporate responsibility: an empirical comparison of different ESG rating approaches[J]. Journal of Asset Management, 2015, 16(7): 450-466. |
3 | WONG W C, BATTEN J A, AHMAD A H, et al. Does ESG certification add firm value?[J]. Finance Research Letters, 2021, 39: No.101593. |
4 | SHANAEV S, GHIMIRE B. When ESG meets AAA: the effect of ESG rating changes on stock returns[J]. Finance Research Letters, 2022, 46(Pt A): No.102302. |
5 | DUQUE-GRISALES E, AGUILERA-CARACUEL J. Environmental, Social and Governance (ESG) scores and financial performance of multilatinas: moderating effects of geographic international diversification and financial slack[J]. Journal of Business Ethics, 2021, 168(2): 315-334. |
6 | LI Y, JIANG W, YANG L, et al. On neural networks and learning systems for business computing[J]. Neurocomputing, 2018, 275: 1150-1159. |
7 | 胡越,罗东阳,花奎,等. 关于深度学习的综述与讨论[J]. 智能系统学报, 2019, 14(1):1-19. |
HU Y, LUO D Y, HUA K, et al. Overview on deep learning[J]. CAAI Transactions on Intelligent Systems, 2019, 14(1): 1-19. | |
8 | 胡海青,张琅,张道宏. 供应链金融视角下的中小企业信用风险评估研究——基于SVM与BP神经网络的比较研究[J]. 管理评论, 2012, 24(11):70-80. |
HU H Q, ZHANG L, ZHANG D H. Research on SMEs credit risk assessment from the perspective of supply chain finance — a comparative study on the SVM model and BP model[J]. Management Review, 2012, 24(11): 70-80. | |
9 | 杨青,王晨蔚. 基于深度学习LSTM神经网络的全球股票指数预测研究[J]. 统计研究, 2019, 36(3):65-77. |
YANG Q, WANG C W. A study on forecast of global stock indices based on deep LSTM neural network[J]. Statistical Research, 2019, 36(3): 65-77. | |
10 | 王翔,胡学钢. 高维小样本分类问题中特征选择研究综述[J]. 计算机应用, 2017, 37(9):2433-2438, 2448. |
WANG X, HU X G. Overview on feature selection in high-dimensional and small-sample-size classification[J]. Journal of Computer Applications, 2017, 37(9): 2433-2438, 2448. | |
11 | LEE Y C. Application of support vector machines to corporate credit rating prediction[J]. Expert Systems with Applications, 2006, 33(1): 67-74. |
12 | 张文杰,蒋烈辉. 一种基于遗传算法优化的大数据特征选择方法[J]. 计算机应用研究, 2020, 37(1):50-52, 56. |
ZHANG W J, JIANG L H. Using genetic algorithm for feature selection optimization on big data processing [J]. Application Research of Computers, 2020, 37(1): 50-52, 56. | |
13 | 谢娟英,谢维信. 基于特征子集区分度与支持向量机的特征选择算法[J]. 计算机学报, 2014, 37(8):1704-1718. |
XIE J Y, XIE W X. Several feature selection algorithms based on the discernibility of a feature subset and support vector machines[J]. Chinese Journal of Computers, 2014, 37(8): 1704-1718. | |
14 | CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794. |
15 | KE G, MENG Q, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 3149-3157. |
16 | 宋美琦,傅湘玲,闫晨巍,等. 基于双向长短时记忆网络的企业弹性能力预测模型[J]. 计算机科学, 2022, 49(11):197-205. |
SONG M Q, FU X L, YAN C W, et al. Prediction model of enterprise resilience based on bi-directional long short-term memory network[J]. Computer Science, 2022, 49(11): 197-205. | |
17 | 梁龙跃,刘波. 基于文本挖掘的上市公司财务风险预警研究[J]. 计算机工程与应用, 2022, 58(4):255-266. |
LIANG L Y, LIU B. Research on financial risk early warning of listed companies based on text mining[J]. Computer Engineering and Applications, 2022, 58(4): 255-266. | |
18 | 孙笑笑,侯文杰,应钰柯,等. 基于双层机器学习的业务流程剩余时间预测[J]. 计算机学报, 2021, 44(11):2283-2294. |
SUN X X, HOU W J, YING Y K, et al. Business process remaining time prediction based on two-layer machine learning[J]. Chinese Journal of Computers, 2021, 44(11): 2283-2294. | |
19 | ESCRIG-OLMEDO E, MUÑOZ-TORRES M J, FERNÁNDEZ-IZQUIERDO M Á, et al. Lights and shadows on sustainability rating scoring[J]. Review of Managerial Science, 2014, 8(4): 559-574. |
20 | HINTON E G, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. |
21 | WOLD S, ESBENSEN K, GELADI P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1/2/3): 37-52. |
22 | 王丽娟,丁世飞. 一种基于ELM-AE特征表示的谱聚类算法[J]. 智能系统学报, 2021, 16(3):560-566. |
WANG L J, DING S F. A spectral clustering algorithm based on ELM-AE feature representation[J]. CAAI Transactions on Intelligent Systems, 2021, 16(3): 560-566. | |
23 | 袁非牛,章琳,史劲亭,等. 自编码神经网络理论及应用综述[J]. 计算机学报, 2019, 42(1):203-230. |
YUAN F N, ZHANG L, SHI J T, et al. Theories and applications of auto-encoder neural networks: a literature survey[J]. Chinese Journal of Computers, 2019, 42(1): 203-230. | |
24 | 霍纬纲,王慧芳. 基于自编码器和隐马尔可夫模型的时间序列异常检测方法[J]. 计算机应用, 2020, 40(5):1329-1334. |
HUO W G, WANG H F. Time series anomaly detection method based on autoencoder and HMM[J]. Journal of Computer Applications, 2020, 40(5): 1329-1334. | |
25 | 高芸芸,赵腊生,张强. 基于双向长短时记忆和卷积Transformer的声学词嵌入模型[J]. 计算机应用, 2024, 44(1):123-128. |
GAO Y Y, ZHAO L S, ZHANG Q. Acoustic word embedding model based on Bi-LSTM and convolutional-Transformer[J]. Journal of Computer Applications, 2024, 44(1): 123-128. | |
26 | 任欢,王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(S1):1-6. |
REN H, WANG X G. Review of attention mechanism[J]. Journal of Computer Applications, 2021, 41(S1): 1-6. | |
27 | 李伯涵,郭茂祖,赵玲玲. 基于分割注意力机制残差网络的城市区域客流量预测[J]. 智能系统学报, 2022, 17(4):839-848. |
LI B H, GUO M Z, ZHAO L L. Passenger flow prediction in urban areas based on residual networks with split attention mechanism[J]. CAAI Transactions on Intelligent Systems, 2022, 17(4): 839-848. | |
28 | JIN D, SHI J, WANG R, et al. Trafformer: unify time and space in traffic prediction[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 8114-8122. |
29 | LIU Y, HU T, ZHANG H, et al. iTransformer: inverted Transformers are effective for time series forecasting[EB/OL]. [2024-11-03].. |
30 | ZERVEAS G, JAYARAMAN S, PATEL D, et al. A transformer-based framework for multivariate time series representation learning[C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 2114-2124. |
31 | BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. [2023-09-14].. |
32 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
33 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
34 | HE K, CHEN X, XIE S, et al. Masked autoencoders are scalable vision learners[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 15979-15988. |
35 | HOULSBY N, GIURGIU A, JASTRZEBSKI S, et al. Parameter-efficient transfer learning for NLP[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 2790-2799. |
[1] | 洪梓榕, 包广清. 基于集成学习的雷达自动目标识别综述[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 371-382. |
[2] | 桂佳扬, 王顺吉, 周正康, 唐加山. 基于改进YOLOv8n的隧道内异物检测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 655-661. |
[3] | 张众维, 王俊, 刘树东, 王志恒. 多尺度特征融合与加权框融合的遥感图像目标检测[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 633-639. |
[4] | 孟海腾, 赵小乐, 李天瑞. 基于非对称信息蒸馏网络的轻量级图像超分辨重建[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 601-609. |
[5] | 王地欣, 王佳昊, 李敏, 陈浩, 胡光耀, 龚宇. 面向水声通信网络的异常攻击检测[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 526-533. |
[6] | 蔡启健, 谭伟. 语义图增强的多模态推荐算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 421-427. |
[7] | 张天骐, 谭霜, 沈夕文, 唐娟. 融合注意力机制和多尺度特征的图像水印方法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 616-623. |
[8] | 邓淼磊, 阚雨培, 孙川川, 徐海航, 樊少珺, 周鑫. 基于深度学习的网络入侵检测系统综述[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 453-466. |
[9] | 余松森, 林智凡, 薛国鹏, 徐建宇. 基于改进YOLOv8的轻量级大幅面瓷砖缺陷检测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 647-654. |
[10] | 丁丹妮, 彭博, 吴锡. 受腹侧通路启发的脂肪肝超声图像分类方法VPNet[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 662-669. |
[11] | 郑宗生, 杜嘉, 成雨荷, 赵泽骋, 张月维, 王绪龙. 用于红外-可见光图像分类的跨模态双流交替交互网络[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 275-283. |
[12] | 徐欣然, 张绍兵, 成苗, 张洋, 曾尚. 基于多路层次化混合专家模型的轴承故障诊断方法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 59-68. |
[13] | 梁杰涛, 罗兵, 付兰慧, 常青玲, 李楠楠, 易宁波, 冯其, 何鑫, 邓辅秦. 基于坐标几何采样的点云配准方法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 214-222. |
[14] | 缪孜珺, 罗飞, 丁炜超, 董文波. 基于全局状态预测与公平经验重放的交通信号控制算法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 337-344. |
[15] | 晏燕, 钱星颖, 闫鹏斌, 杨杰. 位置大数据的联邦学习统计预测与差分隐私保护方法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 127-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||