《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (9): 2940-2947.DOI: 10.11772/j.issn.1001-9081.2023030381
收稿日期:
2023-04-07
修回日期:
2023-07-03
接受日期:
2023-07-06
发布日期:
2023-12-04
出版日期:
2023-12-04
通讯作者:
马巧梅
基金资助:
Received:
2023-04-07
Revised:
2023-07-03
Accepted:
2023-07-06
Online:
2023-12-04
Published:
2023-12-04
Contact:
MA Qiaomei
Supported by:
摘要: 摘 要: 为解决现有医学图像超分辨率重建中存在的图像细节模糊、全局信息利用不充分等问题,提出一种基于空洞卷积与改进的混合注意力机制的医学图像超分辨率重建算法。该方法将深度可分离卷积与空洞卷积思想相结合,使用不同大小感受野对图像进行不同尺度的特征提取,增强特征表达能力。引入边缘通道注意力机制,在提取图像高频特征的同时融合边缘信息,提高模型的重建精度。考虑到医学图像的特殊性,为使重建后的图像效果更加符合人类视觉感观,混合L1损失与感知损失函数作为整体损失函数。并在所用数据集上与SRCNN、VDSR等传统超分算法进行对比实验,结果表明,所提模型在PSNR与SSIM指标上优于对比算法,增强了图像的效果与纹理特征,对图像整体结构还原更加完整。
中图分类号:
李众 王雅婧 马巧梅. 基于空洞卷积的医学图像超分辨率重建算法研究[J]. 计算机应用, 2023, 43(9): 2940-2947.
模块 | PSNR/dB | SSIM |
---|---|---|
DSC | 29.02 | 0.796 3 |
DSC+CA | 30.94 | 0.883 2 |
DSC+SAM | 29.81 | 0.800 0 |
DSC+ECAM | 31.02 | 0.879 5 |
DSC+ISAM | 30.27 | 0.877 1 |
DSC+ECAM+ISAM | 31.35 | 0.901 3 |
表1 不同模块的重建性能比较
Tab. 1 Comparison of reconstruction performance of different modules
模块 | PSNR/dB | SSIM |
---|---|---|
DSC | 29.02 | 0.796 3 |
DSC+CA | 30.94 | 0.883 2 |
DSC+SAM | 29.81 | 0.800 0 |
DSC+ECAM | 31.02 | 0.879 5 |
DSC+ISAM | 30.27 | 0.877 1 |
DSC+ECAM+ISAM | 31.35 | 0.901 3 |
测试集 | 算法 | 不同放大倍数下的PSNR/dB | 不同放大倍数下的SSIM | ||||
---|---|---|---|---|---|---|---|
2倍 | 3倍 | 4倍 | 2倍 | 3倍 | 4倍 | ||
测试集A | Bicubic | 24.88 | 22.97 | 22.15 | 0.789 5 | 0.705 0 | 0.609 8 |
SRCNN | 28.16 | 26.51 | 26.70 | 0.860 0 | 0.794 5 | 0.795 8 | |
FSRCNN | 26.69 | 24.34 | 24.71 | 0.803 5 | 0.693 7 | 0.705 4 | |
VDSR | 30.12 | 27.56 | 27.78 | 0.898 0 | 0.824 5 | 0.818 5 | |
RCAN | 30.44 | 28.47 | 27.93 | 0.891 2 | 0.835 1 | 0.813 7 | |
文献[ | 30.07 | 29.10 | 27.62 | 0.887 1 | 0.821 4 | 0.815 4 | |
FAWDN | 31.11 | 28.95 | 28.44 | 0.923 1 | 0.832 2 | 0.819 1 | |
MIRN | 30.57 | 29.03 | 27.87 | 0.895 7 | 0.825 0 | 0.810 6 | |
本文算法 | 31.35 | 29.31 | 28.74 | 0.901 3 | 0.847 8 | 0.816 9 | |
测试集B | Bicubic | 30.15 | 27.41 | 24.93 | 0.789 5 | 0.808 8 | 0.719 2 |
SRCNN | 34.05 | 30.07 | 27.43 | 0.860 0 | 0.864 8 | 0.784 4 | |
FSRCNN | 29.51 | 26.21 | 24.80 | 0.803 5 | 0.749 5 | 0.689 4 | |
VDSR | 36.20 | 30.80 | 28.06 | 0.898 0 | 0.879 6 | 0.806 3 | |
RCAN | 35.42 | 31.54 | 30.64 | 0.902 5 | 0.863 6 | 0.827 2 | |
文献[ | 35.92 | 33.21 | 30.01 | 0.910 0 | 0.891 0 | 0.829 5 | |
FAWDN | 35.37 | 32.74 | 30.58 | 0.915 2 | 0.890 2 | 0.815 0 | |
MIRN | 35.58 | 33.43 | 30.29 | 0.903 8 | 0.887 6 | 0.828 8 | |
本文算法 | 35.83 | 33.68 | 30.78 | 0.901 3 | 0.897 5 | 0.831 1 |
表2 不同算法的PSNR/SSIM值比较
Tab. 2 Comparison of PSNR/SSIM values of different algorithms
测试集 | 算法 | 不同放大倍数下的PSNR/dB | 不同放大倍数下的SSIM | ||||
---|---|---|---|---|---|---|---|
2倍 | 3倍 | 4倍 | 2倍 | 3倍 | 4倍 | ||
测试集A | Bicubic | 24.88 | 22.97 | 22.15 | 0.789 5 | 0.705 0 | 0.609 8 |
SRCNN | 28.16 | 26.51 | 26.70 | 0.860 0 | 0.794 5 | 0.795 8 | |
FSRCNN | 26.69 | 24.34 | 24.71 | 0.803 5 | 0.693 7 | 0.705 4 | |
VDSR | 30.12 | 27.56 | 27.78 | 0.898 0 | 0.824 5 | 0.818 5 | |
RCAN | 30.44 | 28.47 | 27.93 | 0.891 2 | 0.835 1 | 0.813 7 | |
文献[ | 30.07 | 29.10 | 27.62 | 0.887 1 | 0.821 4 | 0.815 4 | |
FAWDN | 31.11 | 28.95 | 28.44 | 0.923 1 | 0.832 2 | 0.819 1 | |
MIRN | 30.57 | 29.03 | 27.87 | 0.895 7 | 0.825 0 | 0.810 6 | |
本文算法 | 31.35 | 29.31 | 28.74 | 0.901 3 | 0.847 8 | 0.816 9 | |
测试集B | Bicubic | 30.15 | 27.41 | 24.93 | 0.789 5 | 0.808 8 | 0.719 2 |
SRCNN | 34.05 | 30.07 | 27.43 | 0.860 0 | 0.864 8 | 0.784 4 | |
FSRCNN | 29.51 | 26.21 | 24.80 | 0.803 5 | 0.749 5 | 0.689 4 | |
VDSR | 36.20 | 30.80 | 28.06 | 0.898 0 | 0.879 6 | 0.806 3 | |
RCAN | 35.42 | 31.54 | 30.64 | 0.902 5 | 0.863 6 | 0.827 2 | |
文献[ | 35.92 | 33.21 | 30.01 | 0.910 0 | 0.891 0 | 0.829 5 | |
FAWDN | 35.37 | 32.74 | 30.58 | 0.915 2 | 0.890 2 | 0.815 0 | |
MIRN | 35.58 | 33.43 | 30.29 | 0.903 8 | 0.887 6 | 0.828 8 | |
本文算法 | 35.83 | 33.68 | 30.78 | 0.901 3 | 0.897 5 | 0.831 1 |
算法 | 运行时间/s | 算法 | 运行时间/s |
---|---|---|---|
Bicubic | 1.071 | 文献[ | 3.056 |
SRCNN | 1.654 | FAWDN | 5.631 |
FSRCNN | 1.241 | MIRN | 4.944 |
VDSR | 2.062 | 本文算法 | 3.527 |
RCAN | 2.453 |
表3 不同算法重建图像的平均用时
Tab. 3 Average time spent to reconstruct images bydifferent algorithms
算法 | 运行时间/s | 算法 | 运行时间/s |
---|---|---|---|
Bicubic | 1.071 | 文献[ | 3.056 |
SRCNN | 1.654 | FAWDN | 5.631 |
FSRCNN | 1.241 | MIRN | 4.944 |
VDSR | 2.062 | 本文算法 | 3.527 |
RCAN | 2.453 |
1 | CHRISTENSEN-JEFFRIES K, COUTURE O, DAYTON P A, et al. Super-resolution ultrasound imaging[J]. Ultrasound in Medicine and Biology, 2020, 46(4): 865-891. 10.1016/j.ultrasmedbio.2019.11.013 |
2 | BÄTZ M, EICHENSEER A, SEILER J, et al. Hybrid super-resolution combining example-based single-image and interpolation-based multi-image reconstruction approaches[C]// Proceeding of the 2015 IEEE International Conference on Image Processing. Piscataway: IEEE, 2015: 58-62. 10.1109/icip.2015.7350759 |
3 | 李现国,冯欣欣,李建雄. 多尺度残差网络的单幅图像超分辨率重建[J]. 计算机工程与应用, 2021, 57(7):215-221. 10.3778/j.issn.1002-8331.2001-0073 |
LI X G, FENG X X, LI J X. Single image super-resolution reconstruction based on multi-scale residual network[J]. Computer Engineering and Applications, 2021, 57(7): 215-221. 10.3778/j.issn.1002-8331.2001-0073 | |
4 | DONG C, LOY C C, HE K M,et al . Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38 (2) : 295-307. 10.1109/tpami.2015.2439281 |
5 | KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2016:1646-1654. 10.1109/cvpr.2016.182 |
6 | LIM B,SON S, KIM H,et al. Enhanced deep residual networks for single image super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE,2017:1132-1440. 10.1109/cvprw.2017.151 |
7 | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]∥ Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:1800-1807. 10.1109/cvpr.2017.195 |
8 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deep Lab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(4):834-848. 10.1109/tpami.2017.2699184 |
9 | 胡雪影,郭海儒,朱蓉. 基于混合深度卷积网络的图像超分辨率重建[J]. 计算机应用, 2020, 40(7):2069-2076. 10.11772/j.issn.1001-9081.2019122149 |
HU X Y, GUO H R, ZHU R. Image super-resolution reconstruction based on hybrid deep convolutional network[J]. Journal of Computer Applications, 2020, 40(7): 2069-2076. 10.11772/j.issn.1001-9081.2019122149 | |
10 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer,2018: 3-19. |
11 | 张晔,刘蓉,刘明,等. 基于多通道注意力机制的图像超分辨率重建网络[J]. 计算机应用,2022,42(5):1563-1569. 10.11772/j.issn.1001-9081.2021030498 |
ZHANG Y, LIU R, LIU M, et al. Image super-resolution reconstruction network based on multi-channel attention mechanism[J]. Journal of Computer Applications, 2022, 42(5): 1563-1569. 10.11772/j.issn.1001-9081.2021030498 | |
12 | ZHANG Y N, AN M Q. Deep learning-and transfer learning-based super resolution reconstruction from single medical image[J]. Journal of Healthcare Engineering, 2017, 2017:No.5859727. 10.1155/2017/5859727 |
13 | WANG Y K, TENG Q Z, HE X H, et al. CT-image of rock samples super resolution using 3D convolutional neural network[J]. Computers and Geosciences, 2019, 133: No.104314. 10.1016/j.cageo.2019.104314 |
14 | 高媛,王晓晨,秦品乐,等. 基于深度可分离卷积和宽残差网络的医学影像超分辨率重建[J]. 计算机应用, 2019, 39(9):2731-2737. 10.11772/j.issn.1001-9081.2019030413 |
GAO Y, WANG X C, QIN P L, et al. Medical image super-resolution reconstruction based on deep separable convolution and wide residual network[J]. Journal of Computer Applications, 2019, 39(9): 2731-2737. 10.11772/j.issn.1001-9081.2019030413 | |
15 | CHEN L H, YANG X M, JEON G, et al. A trusted medical image super-resolution method based on feedback adaptive weighted dense network[J]. Artificial Intelligence in Medicine,2020,106:No.101857. 10.1016/j.artmed.2020.101857 |
16 | QIU D F, ZHENG L X, ZHU J Q, et al. Multiple improved residual networks for medical image super-resolution[J]. Future Generation Computer Systems, 2021,116: 200-208. 10.1016/j.future.2020.11.001 |
17 | HE K M, ZHANG X Y, REN SH Q,et al.Deep residual learning for image recognition[C]// Proceeding of the 2016 IEEE Conference on Computer Vision and Pattern Recongnition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
18 | ENGEL J, KOLTUN V, CREMERS D. Direct sparse odometry [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(3):611-625. 10.1109/tpami.2017.2658577 |
19 | CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986,PAMI-8(6): 679-698. 10.1109/tpami.1986.4767851 |
20 | ZHAO H, GALLO O, FROSIO I, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 47-57. 10.1109/tci.2016.2644865 |
21 | SHEN H. Towards a mathematical understanding of the difficulty in learning with feedforward neural networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 811-820. 10.1109/cvpr.2018.00091 |
22 | ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]∥ Proceeding of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:586-595. 10.1109/cvpr.2018.00068 |
23 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2023-01-17]. . |
24 | KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153-1160. 10.1109/tassp.1981.1163711 |
25 | DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network [EB/OL]. [2022-12-18]. . 10.1007/978-3-319-46475-6_25 |
26 | ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 286-301. |
27 | 李俊珠,郑华,雷帅,等. 基于多尺度注意力残差网络的图像超分辨率重建[J]. 计算机系统应用, 2022, 31(5):324-330. |
LI J Z, ZHENG H, LEI S, et al. Image super-resolution reconstruction based on multi-scale attention residual network[J]. Computer Systems and Applications, 2022, 31(5):324-330. |
[1] | 薛凯鹏, 徐涛, 廖春节. 融合自监督和多层交叉注意力的多模态情感分析网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2387-2392. |
[2] | 汪雨晴, 朱广丽, 段文杰, 李书羽, 周若彤. 基于交互注意力机制的心理咨询文本情感分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2393-2399. |
[3] | 高鹏淇, 黄鹤鸣, 樊永红. 融合坐标与多头注意力机制的交互语音情感识别[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2400-2406. |
[4] | 李钟华, 白云起, 王雪津, 黄雷雷, 林初俊, 廖诗宇. 基于图像增强的低照度人脸检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2588-2594. |
[5] | 莫尚斌, 王文君, 董凌, 高盛祥, 余正涛. 基于多路信息聚合协同解码的单通道语音增强[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2611-2617. |
[6] | 熊武, 曹从军, 宋雪芳, 邵云龙, 王旭升. 基于多尺度混合域注意力机制的笔迹鉴别方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2225-2232. |
[7] | 李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072. |
[8] | 毛典辉, 李学博, 刘峻岭, 张登辉, 颜文婧. 基于并行异构图和序列注意力机制的中文实体关系抽取模型[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2018-2025. |
[9] | 刘丽, 侯海金, 王安红, 张涛. 基于多尺度注意力的生成式信息隐藏算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2102-2109. |
[10] | 徐松, 张文博, 王一帆. 基于时空信息的轻量视频显著性目标检测网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2192-2199. |
[11] | 李大海, 王忠华, 王振东. 结合空间域和频域信息的双分支低光照图像增强网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2175-2182. |
[12] | 魏文亮, 王阳萍, 岳彪, 王安政, 张哲. 基于光照权重分配和注意力的红外与可见光图像融合深度学习模型[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2183-2191. |
[13] | 周妍, 李阳. 用于脑卒中病灶分割的具有注意力机制的校正交叉伪监督方法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1942-1948. |
[14] | 刘越, 刘芳, 武奥运, 柴秋月, 王天笑. 基于自注意力机制与图卷积的3D目标检测网络[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1972-1977. |
[15] | 刘源泂, 何茂征, 黄益斌, 钱程. 基于ResNet50和改进注意力机制的船舶识别模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1935-1941. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||