《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (9): 2940-2947.DOI: 10.11772/j.issn.1001-9081.2023030381

• • 上一篇    下一篇

基于空洞卷积的医学图像超分辨率重建算法研究

李众1,王雅婧2,马巧梅3   

  1. 1. 中北大学软件学院
    2. 中北大学
    3. 中北大学软件学院, 太原 030051
  • 收稿日期:2023-04-07 修回日期:2023-07-03 接受日期:2023-07-06 发布日期:2023-12-04 出版日期:2023-12-04
  • 通讯作者: 马巧梅
  • 基金资助:
    山西省自然科学基金

Research on super-resolution reconstruction algorithm of medical images based on void convolution

  • Received:2023-04-07 Revised:2023-07-03 Accepted:2023-07-06 Online:2023-12-04 Published:2023-12-04
  • Contact: MA Qiaomei
  • Supported by:
    Shanxi Provincial Natural Science Foundation

摘要: 摘 要: 为解决现有医学图像超分辨率重建中存在的图像细节模糊、全局信息利用不充分等问题,提出一种基于空洞卷积与改进的混合注意力机制的医学图像超分辨率重建算法。该方法将深度可分离卷积与空洞卷积思想相结合,使用不同大小感受野对图像进行不同尺度的特征提取,增强特征表达能力。引入边缘通道注意力机制,在提取图像高频特征的同时融合边缘信息,提高模型的重建精度。考虑到医学图像的特殊性,为使重建后的图像效果更加符合人类视觉感观,混合L1损失与感知损失函数作为整体损失函数。并在所用数据集上与SRCNN、VDSR等传统超分算法进行对比实验,结果表明,所提模型在PSNR与SSIM指标上优于对比算法,增强了图像的效果与纹理特征,对图像整体结构还原更加完整。

关键词: 关键词: 超分辨率重建, 医学图像, 深度可分离卷积, 空洞卷积, 注意力机制

Abstract: Abstract: To solve the problems of blurred image details and insufficient utilization of global information in existing medical image super-resolution reconstruction, a medical image super-resolution reconstruction algorithm based on void convolution and improved hybrid attention mechanism is proposed. The method combines depth-separable convolution with the idea of cavity convolution to extract features at different scales of images using different size perceptual fields to enhance feature representation. The edge channel attention mechanism is introduced to fuse the edge information while extracting the high frequency features of the image to improve the reconstruction accuracy of the model. Considering the special characteristics of medical images, the L1 loss and perceptual loss function are mixed as the overall loss function in order to make the reconstructed image effect more consistent with human visual perception. The results show that the proposed model outperforms the comparison algorithms in terms of PSNR and SSIM indexes, enhances the effect and texture features of the image, and provides a more complete restoration of the overall image structure.

Key words: Keywords: super-resolution reconstruction, medical image, depthwise separable convolution, dilated convolution, attention mechanism

中图分类号: