《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (10): 3235-3243.DOI: 10.11772/j.issn.1001-9081.2021081528
• 前沿与综合应用 • 上一篇
收稿日期:
2021-08-27
修回日期:
2021-11-24
接受日期:
2021-11-25
发布日期:
2022-01-07
出版日期:
2022-10-10
通讯作者:
倪志伟
作者简介:
第一联系人:彭鹏(1988—),男,安徽合肥人,讲师,博士研究生,CCF会员,主要研究方向:智能计算、空间众包基金资助:
Peng PENG1,2,3, Zhiwei NI1,3, Xuhui ZHU1,3
Received:
2021-08-27
Revised:
2021-11-24
Accepted:
2021-11-25
Online:
2022-01-07
Published:
2022-10-10
Contact:
Zhiwei NI
About author:
PENG Peng, born in 1988, Ph. D. candidate, lecturer. His research interests include intelligent computing, spatial crowdsourcing.Supported by:
摘要:
针对生活中专车类空间众包用户存在偏好和延时等待的实际情况,提出一种基于用户满意效用的空间众包任务分配方法IGSO-SSCTA。首先,定义了由用户偏好效用、延时等待效用和任务完成期望组成的用户满意效用;其次,构建了基于用户满意效用的空间众包任务分配(SSCTA)模型;接着,通过离散编码、反向学习协同初始化、四种改进移动策略、自适应选择和不可行解处理,提出一种适用该模型的改进离散萤火虫群优化(IGSO)算法;最后,利用IGSO算法对前述模型进行求解。不同规模数据集上的实验结果表明,所提方法和考虑时间最小化分配、考虑路程最小化分配、随机分配三种策略相比,用户满意效用分别提高了提升了9.64%、11.77%、15.70%;所提算法与贪婪算法和其他改进萤火虫算法相比,也有更好的稳定性和收敛性。
中图分类号:
彭鹏, 倪志伟, 朱旭辉. 基于用户满意效用的空间众包任务分配方法[J]. 计算机应用, 2022, 42(10): 3235-3243.
Peng PENG, Zhiwei NI, Xuhui ZHU. Task allocation method of spatial crowdsourcing based on user satisfaction utility[J]. Journal of Computer Applications, 2022, 42(10): 3235-3243.
指标编号 | 指标内容 | 指标占比/% | 对应参数 |
---|---|---|---|
A | 遵守交通规则 | 86.6 | pa |
B | 路况熟悉度 | 84.1 | pb |
C | 驾驶平稳 | 75.9 | pc |
D | 车辆品质 | 58.2 | pd |
E | 车内卫生 | 55.1 | pe |
F | 工作者文明礼仪 | 49.8 | pf |
G | 是否有烟味 | 34.1 | pg |
H | 工作者性别 | 15.2 | ph |
表1 用户偏好指标
Tab. 1 Indicators of user preferences
指标编号 | 指标内容 | 指标占比/% | 对应参数 |
---|---|---|---|
A | 遵守交通规则 | 86.6 | pa |
B | 路况熟悉度 | 84.1 | pb |
C | 驾驶平稳 | 75.9 | pc |
D | 车辆品质 | 58.2 | pd |
E | 车内卫生 | 55.1 | pe |
F | 工作者文明礼仪 | 49.8 | pf |
G | 是否有烟味 | 34.1 | pg |
H | 工作者性别 | 15.2 | ph |
移动策略 | 萤火虫i各维度数值 | |||||
---|---|---|---|---|---|---|
第1维 | 第2维 | 第3维 | 第4维 | 第5维 | 第6维 | |
萤火虫i | 3 | 4 | 6 | 8 | 1 | 2 |
互交换 | 3 | 1 | 6 | 8 | 4 | 2 |
反演 | 3 | 1 | 8 | 6 | 4 | 2 |
左相邻交换 | 4 | 3 | 6 | 1 | 8 | 2 |
右相邻交换 | 3 | 6 | 4 | 8 | 2 | 1 |
表2 四种移动策略
Tab. 2 Four mobile strategies
移动策略 | 萤火虫i各维度数值 | |||||
---|---|---|---|---|---|---|
第1维 | 第2维 | 第3维 | 第4维 | 第5维 | 第6维 | |
萤火虫i | 3 | 4 | 6 | 8 | 1 | 2 |
互交换 | 3 | 1 | 6 | 8 | 4 | 2 |
反演 | 3 | 1 | 8 | 6 | 4 | 2 |
左相邻交换 | 4 | 3 | 6 | 1 | 8 | 2 |
右相邻交换 | 3 | 6 | 4 | 8 | 2 | 1 |
算法 | 主要参数 |
---|---|
IGSO | ρ=0.4,γ=0.6,β=0.08,rs =15, nt =6,R1=0.4h=0.5,ρmin=0.25 |
DGSO | |
MGSO[ | ρ=0.4,γ=0.6,β=0.08,rs =15,nt =6 |
FGSO[ | |
IDFA[ | γ=0.08,β=6 |
CDFA[ | |
GR[ | — |
表3 不同算法的主要参数
Tab. 3 Main parameters of different algorithms
算法 | 主要参数 |
---|---|
IGSO | ρ=0.4,γ=0.6,β=0.08,rs =15, nt =6,R1=0.4h=0.5,ρmin=0.25 |
DGSO | |
MGSO[ | ρ=0.4,γ=0.6,β=0.08,rs =15,nt =6 |
FGSO[ | |
IDFA[ | γ=0.08,β=6 |
CDFA[ | |
GR[ | — |
参数 | 取值 | 数据来源 |
---|---|---|
M1 | (10,15,20,25,30,35,40,45,50,55,60,65) | 合成 |
M2 | (500,1 000,1 500,2 000,2 500,3 000) | 合成 |
pu | pa,pb,pc,pd,pe,pf,pg,ph | 调查统计 |
qw | [0,100] | 随机生成 |
vw | [0,5] | 随机生成 |
lu | [0,100] | 真实数据映射 |
lw | [0,100] | 真实数据映射 |
pu | [0,1] | 随机生成 |
zw | (0.5,1) | 随机生成 |
表4 实验数据说明
Tab. 4 Experimental data explanation
参数 | 取值 | 数据来源 |
---|---|---|
M1 | (10,15,20,25,30,35,40,45,50,55,60,65) | 合成 |
M2 | (500,1 000,1 500,2 000,2 500,3 000) | 合成 |
pu | pa,pb,pc,pd,pe,pf,pg,ph | 调查统计 |
qw | [0,100] | 随机生成 |
vw | [0,5] | 随机生成 |
lu | [0,100] | 真实数据映射 |
lw | [0,100] | 真实数据映射 |
pu | [0,1] | 随机生成 |
zw | (0.5,1) | 随机生成 |
数据集 | P(S)值 | P(T)值 | P(L)值 | P(R)值 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAX | MIN | AVG | MAX | MIN | AVG | MAX | MIN | AVG | MAX | MIN | AVG | |
Sdate1 | 902.14 | 812.35 | 868.24 | 812.59 | 735.18 | 770.04 | 782.02 | 741.20 | 754.03 | 732.17 | 696.66 | 713.14 |
Sdate2 | 1 353.21 | 1 302.56 | 1 322.14 | 1 251.31 | 1 116.24 | 1 182.95 | 1 188.64 | 1 078.26 | 1 122.13 | 1 135.61 | 1 023.54 | 1 085.22 |
Sdate3 | 1 906.23 | 1 989.15 | 1 762.72 | 1 681.04 | 1 538.16 | 1 588.67 | 1 609.94 | 1 533.12 | 1 555.40 | 1 610.53 | 1 408.86 | 1 507.61 |
Sdate4 | 2 180.23 | 2 111.58 | 2 129.45 | 1 954.93 | 1 881.47 | 1 911.24 | 1 952.31 | 1 851.23 | 1 892.34 | 1 923.68 | 1 726.47 | 1 846.12 |
Sdate5 | 2 758.63 | 2 502.71 | 2 608.90 | 2 437.21 | 2 310.25 | 2 387.15 | 2 485.25 | 2 304.26 | 2 345.78 | 2 300.69 | 2 114.31 | 2 225.79 |
Sdate6 | 2 993.36 | 2 907.22 | 2 962.14 | 2 779.15 | 2 615.43 | 2 704.36 | 2 721.91 | 2 606.31 | 2 651.35 | 2 675.32 | 2 546.91 | 2 612.75 |
Sdate7 | 3 602.15 | 3 303.21 | 3 395.63 | 3 200.15 | 3 020.21 | 3 120.15 | 3 125.37 | 2 987.13 | 3 061.24 | 2 957.28 | 2 846.20 | 2 910.58 |
Sdate8 | 3 762.25 | 3 685.12 | 3 719.53 | 3 541.23 | 3 341.28 | 3 446.21 | 3 443.26 | 3 321.49 | 3 398.51 | 3 294.23 | 3 170.61 | 3 241.37 |
Sdate9 | 4 301.62 | 4 020.25 | 4 152.89 | 4 005.27 | 3 750.12 | 3 850.12 | 3 900.21 | 3 740.13 | 3 801.54 | 3 819.05 | 3 653.38 | 3 743.00 |
Sdate10 | 4 670.65 | 4 501.32 | 4 598.91 | 4 301.49 | 4 142.39 | 4 219.82 | 4 211.97 | 4 085.27 | 4 139.63 | 4 102.28 | 3 941.29 | 4 012.83 |
Sdate11 | 5 256.32 | 4 901.23 | 5 035.67 | 4 799.21 | 4 529.32 | 4 627.22 | 4 685.21 | 4 502.33 | 4 577.97 | 4 544.84 | 4 173.41 | 4 459.92 |
Sdate12 | 5 521.37 | 5 364.23 | 5 407.89 | 5 113.65 | 4 942.36 | 5 027.19 | 5 015.34 | 4 912.31 | 4 971.57 | 4 927.98 | 4 742.39 | 4 745.16 |
表5 四种策略的用户满意效用对比
Tab. 5 User satisfaction utility comparison of four strategies
数据集 | P(S)值 | P(T)值 | P(L)值 | P(R)值 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAX | MIN | AVG | MAX | MIN | AVG | MAX | MIN | AVG | MAX | MIN | AVG | |
Sdate1 | 902.14 | 812.35 | 868.24 | 812.59 | 735.18 | 770.04 | 782.02 | 741.20 | 754.03 | 732.17 | 696.66 | 713.14 |
Sdate2 | 1 353.21 | 1 302.56 | 1 322.14 | 1 251.31 | 1 116.24 | 1 182.95 | 1 188.64 | 1 078.26 | 1 122.13 | 1 135.61 | 1 023.54 | 1 085.22 |
Sdate3 | 1 906.23 | 1 989.15 | 1 762.72 | 1 681.04 | 1 538.16 | 1 588.67 | 1 609.94 | 1 533.12 | 1 555.40 | 1 610.53 | 1 408.86 | 1 507.61 |
Sdate4 | 2 180.23 | 2 111.58 | 2 129.45 | 1 954.93 | 1 881.47 | 1 911.24 | 1 952.31 | 1 851.23 | 1 892.34 | 1 923.68 | 1 726.47 | 1 846.12 |
Sdate5 | 2 758.63 | 2 502.71 | 2 608.90 | 2 437.21 | 2 310.25 | 2 387.15 | 2 485.25 | 2 304.26 | 2 345.78 | 2 300.69 | 2 114.31 | 2 225.79 |
Sdate6 | 2 993.36 | 2 907.22 | 2 962.14 | 2 779.15 | 2 615.43 | 2 704.36 | 2 721.91 | 2 606.31 | 2 651.35 | 2 675.32 | 2 546.91 | 2 612.75 |
Sdate7 | 3 602.15 | 3 303.21 | 3 395.63 | 3 200.15 | 3 020.21 | 3 120.15 | 3 125.37 | 2 987.13 | 3 061.24 | 2 957.28 | 2 846.20 | 2 910.58 |
Sdate8 | 3 762.25 | 3 685.12 | 3 719.53 | 3 541.23 | 3 341.28 | 3 446.21 | 3 443.26 | 3 321.49 | 3 398.51 | 3 294.23 | 3 170.61 | 3 241.37 |
Sdate9 | 4 301.62 | 4 020.25 | 4 152.89 | 4 005.27 | 3 750.12 | 3 850.12 | 3 900.21 | 3 740.13 | 3 801.54 | 3 819.05 | 3 653.38 | 3 743.00 |
Sdate10 | 4 670.65 | 4 501.32 | 4 598.91 | 4 301.49 | 4 142.39 | 4 219.82 | 4 211.97 | 4 085.27 | 4 139.63 | 4 102.28 | 3 941.29 | 4 012.83 |
Sdate11 | 5 256.32 | 4 901.23 | 5 035.67 | 4 799.21 | 4 529.32 | 4 627.22 | 4 685.21 | 4 502.33 | 4 577.97 | 4 544.84 | 4 173.41 | 4 459.92 |
Sdate12 | 5 521.37 | 5 364.23 | 5 407.89 | 5 113.65 | 4 942.36 | 5 027.19 | 5 015.34 | 4 912.31 | 4 971.57 | 4 927.98 | 4 742.39 | 4 745.16 |
数据集 | IGSO | DGSO | MGSO | FGSO | IDFA | CDFA | GR | 数据集 | IGSO | DGSO | MGSO | FGSO | IDFA | CDFA | GR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sdate1 | 13.01 | 12.99 | 15.81 | 15.91 | 15.82 | 16.31 | 16.19 | Sdate7 | 14.43 | 15.32 | 15.92 | 15.99 | 15.92 | 16.43 | 22.45 |
Sdate2 | 13.25 | 13.12 | 15.93 | 16.01 | 16.11 | 16.62 | 16.72 | Sdate8 | 14.87 | 15.71 | 16.18 | 16.23 | 16.13 | 16.58 | 24.62 |
Sdate3 | 13.47 | 13.24 | 15.88 | 15.94 | 15.88 | 16.36 | 17.53 | Sdate9 | 14.93 | 15.91 | 16.25 | 16.29 | 15.92 | 16.50 | 26.95 |
Sdate4 | 14.01 | 14.03 | 15.84 | 15.89 | 15.84 | 16.32 | 18.96 | Sdate10 | 15.03 | 16.02 | 16.42 | 16.44 | 16.22 | 16.69 | 28.56 |
Sdate5 | 14.12 | 14.51 | 15.89 | 15.93 | 15.97 | 16.37 | 19.17 | Sdate11 | 15.12 | 16.08 | 16.37 | 16.40 | 16.21 | 16.65 | 30.84 |
Sdate6 | 14.27 | 14.65 | 15.95 | 16.01 | 16.04 | 16.44 | 20.96 | Sdate12 | 15.29 | 16.23 | 16.44 | 16.47 | 16.46 | 16.73 | 32.52 |
表6 不同算法的求解时间 ( s)
Tab. 6 Solution times of different algorithms
数据集 | IGSO | DGSO | MGSO | FGSO | IDFA | CDFA | GR | 数据集 | IGSO | DGSO | MGSO | FGSO | IDFA | CDFA | GR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sdate1 | 13.01 | 12.99 | 15.81 | 15.91 | 15.82 | 16.31 | 16.19 | Sdate7 | 14.43 | 15.32 | 15.92 | 15.99 | 15.92 | 16.43 | 22.45 |
Sdate2 | 13.25 | 13.12 | 15.93 | 16.01 | 16.11 | 16.62 | 16.72 | Sdate8 | 14.87 | 15.71 | 16.18 | 16.23 | 16.13 | 16.58 | 24.62 |
Sdate3 | 13.47 | 13.24 | 15.88 | 15.94 | 15.88 | 16.36 | 17.53 | Sdate9 | 14.93 | 15.91 | 16.25 | 16.29 | 15.92 | 16.50 | 26.95 |
Sdate4 | 14.01 | 14.03 | 15.84 | 15.89 | 15.84 | 16.32 | 18.96 | Sdate10 | 15.03 | 16.02 | 16.42 | 16.44 | 16.22 | 16.69 | 28.56 |
Sdate5 | 14.12 | 14.51 | 15.89 | 15.93 | 15.97 | 16.37 | 19.17 | Sdate11 | 15.12 | 16.08 | 16.37 | 16.40 | 16.21 | 16.65 | 30.84 |
Sdate6 | 14.27 | 14.65 | 15.95 | 16.01 | 16.04 | 16.44 | 20.96 | Sdate12 | 15.29 | 16.23 | 16.44 | 16.47 | 16.46 | 16.73 | 32.52 |
数据规模 | 用户满意效用值/104 | ||||||
---|---|---|---|---|---|---|---|
IGSO | DGSO | MGSO | FGSO | IDFA | CDFA | GR | |
500 | 3.883 6 | 3.788 0 | 3.839 | 3.806 | 3.833 6 | 3.844 0 | 3.781 0 |
1 000 | 7.624 9 | 7.558 0 | 7.582 | 7.562 | 7.588 2 | 7.589 0 | 7.550 0 |
1 500 | 11.396 8 | 11.274 5 | 11.320 | 11.340 | 11.343 6 | 11.339 0 | 11.256 5 |
2 000 | 15.128 4 | 15.010 9 | 15.080 | 15.050 | 15.078 2 | 15.034 0 | 14.995 9 |
2 500 | 18.895 3 | 18.742 5 | 18.830 | 18.780 | 18.842 6 | 18.787 2 | 18.722 5 |
3 000 | 22.599 3 | 22.461 6 | 22.540 | 22.490 | 22.523 0 | 22.525 6 | 22.431 6 |
表7 七种算法在M2上的求解结果
Tab. 7 Results of seven algorithms on M2
数据规模 | 用户满意效用值/104 | ||||||
---|---|---|---|---|---|---|---|
IGSO | DGSO | MGSO | FGSO | IDFA | CDFA | GR | |
500 | 3.883 6 | 3.788 0 | 3.839 | 3.806 | 3.833 6 | 3.844 0 | 3.781 0 |
1 000 | 7.624 9 | 7.558 0 | 7.582 | 7.562 | 7.588 2 | 7.589 0 | 7.550 0 |
1 500 | 11.396 8 | 11.274 5 | 11.320 | 11.340 | 11.343 6 | 11.339 0 | 11.256 5 |
2 000 | 15.128 4 | 15.010 9 | 15.080 | 15.050 | 15.078 2 | 15.034 0 | 14.995 9 |
2 500 | 18.895 3 | 18.742 5 | 18.830 | 18.780 | 18.842 6 | 18.787 2 | 18.722 5 |
3 000 | 22.599 3 | 22.461 6 | 22.540 | 22.490 | 22.523 0 | 22.525 6 | 22.431 6 |
1 | 童咏昕,袁野,成雨蓉,等. 时空众包数据管理技术研究综述[J]. 软件学报, 2017, 28(1): 35-58. |
TONG Y X, YUAN Y, CHENG Y R, et al. Survey on spatiotemporal crowdsourced data management techniques[J]. Journal of Software, 2017, 28(1): 35-58. | |
2 | KAZEMI L, SHAHABI C. GeoCrowd: enabling query answering with spatial crowdsourcing[C]// Proceedings of the 20th International Conference. on Advances in Geographic Information Systems. New York: ACM, 2012:189-198. 10.1145/2424321.2424346 |
3 | 潘庆先,殷增轩,董红斌,等. 基于禁忌搜索的时空众包任务分配算法[J]. 智能系统学报, 2020, 15(6):1040-1048. 10.11992/tis.202006055 |
PAN Q X, YIN Z X, DONG H B, et al. Spatiotemporal crowdsourcing task assignment algorithm based on tabu search[J]. CAAI Transactions on Intelligent Systems, 2020, 15(6):1040-1048. 10.11992/tis.202006055 | |
4 | HASSAN U UL, CURRY E. Efficient task assignment for spatial crowdsourcing: a combinatorial fractional optimization approach with semi-bandit learning[J]. Expert Systems with Applications, 2016, 58: 36-56. 10.1016/j.eswa.2016.03.022 |
5 | 张兴盛,余敦辉,张万山,等. 时空众包环境下时效均衡的在线任务分配算法[J]. 计算机应用, 2019, 39(5):1357-1363. 10.11772/j.issn.1001-9081.2018092027 |
ZHANG X S, YU D H, ZHANG W S, et al. Time utility balanced online task assignment algorithm under spatial crowdsourcing environment[J]. Journal of Computer Applications, 2019, 39(5):1357-1363. 10.11772/j.issn.1001-9081.2018092027 | |
6 | 宋天舒,童咏昕,王立斌,等. 空间众包环境下的3类对象在线任务分配[J]. 软件学报, 2017, 28(3):611-630. |
SONG T S, TONG Y X, WANG L B, et al. Online task assignment for three types of objects under spatial crowdsourcing environment[J]. Journal of Software, 2017, 28(3):611-630. | |
7 | 李博扬,成雨蓉,王国仁,等. 新型时空众包平台中的在线三维稳定匹配问题[J]. 软件学报, 2020, 31(12):3836-3851. |
LI B Y, CHENG Y R, WANG G R, et al. 3D-online stable matching problem for new spatial crowdsourcing platforms[J]. Journal of Software, 2020, 31(12):3836-3851. | |
8 | CHENG P, LIAN X, CHEN L, et al. Task assignment on multi-skill oriented spatial crowdsourcing[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(8):2201-2212. 10.1109/tkde.2016.2550041 |
9 | TO H, FAN L Y, TRAN L, et al. Real-time task assignment in hyperlocal spatial crowdsourcing under budget constraints[C]// Proceedings of the 2016 IEEE International Conference on Pervasive Computing and Communications. Piscataway: IEEE, 2016:1-8. 10.1109/percom.2016.7456507 |
10 | 余敦辉,张灵莉,付聪. 基于动态效用的时空众包在线任务分配[J]. 电子与信息学报, 2018, 18(7):1699-1706. 10.11999/JEIT170930 |
YU D H, ZHANG L L, FU C. Online task allocation of spatial crowdsourcing based on dynamic utility[J]. Journal of Electronics and Information Technology, 2018, 18(7):1699-1706. 10.11999/JEIT170930 | |
11 | TONG Y X, SHE J Y, DING B L, et al. Online mobile micro-task allocation in spatial crowdsourcing[C]// Proceedings of the IEEE 32nd International Conference on Data Engineering. Piscataway: IEEE, 2016:49-60. 10.1109/icde.2016.7498228 |
12 | TONG Y X, SHE J Y, DING B L, et al. Online minimum matching in real-time spatial data: experiments and analysis[J]. Proceedings of the VLDB Endowment, 2016, 9(12):1053-1064. 10.14778/2994509.2994523 |
13 | DICKERSON J P, SANKARARAMAN K A, SRINIVASAN, et al. Assigning tasks to workers based on historical data: online task assignment with two-sided arrivals[C]// Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems. Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems, 2018:318-326. |
14 | WANG L, YU Z W, HAN Q, et al. Multi-objective optimization based allocation of heterogeneous spatial crowdsourcing tasks[J]. IEEE Transactions on Mobile Computing, 2018, 17(7):1637-1650. 10.1109/tmc.2017.2771259 |
15 | BONYADI M R. A theoretical guideline for designing an effective adaptive particle swarm[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(1):57-68. 10.1109/tevc.2019.2906894 |
16 | TORABI S, BELLONE M, WAHDE M.Energy minimization for an electric bus using a genetic algorithm[J]. European Transport Research Review, 2020, 12: No.2. 10.1186/s12544-019-0393-1 |
17 | 李晓磊,邵之江,钱积新. 一种基于动物自治体的寻优模式:鱼群算法[J]. 系统工程理论与实践, 2002(11): 32-38. 10.3321/j.issn:1000-6788.2002.11.007 |
LI X L, SHAO Z J, QIAN J X. An optimization model based on animal autonomy: fish swarm algorithm[J]. System Engineering—Theory and Practice, 2002(11): 33-38. 10.3321/j.issn:1000-6788.2002.11.007 | |
18 | KRISHNANAND K N, GHOSE D. Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications[J]. Multiagent Grid Systems, 2006, 2(3): 209-222. 10.3233/mgs-2006-2301 |
19 | YANG X S. Nature-Inspired Metaheuristic Algorithms[M]. Frome: Luniver Press, 2008: 79-90. |
20 | 朱旭辉,倪志伟,程美英,等. 融合协同进化离散型人工鱼群算法和多重分形的雾霾预测方法[J]. 系统工程理论与实践, 2017, 37(4):999-1010. 10.12011/1000-6788(2017)04-0999-12 |
ZHU X H, NI Z W, CHENG M Y, et al. Haze prediction method based on multi-fractal dimension and co-evolution discrete artificial fish swarm algorithm[J]. Systems Engineering—Theory and Practice, 2017, 37(4):999-1010. 10.12011/1000-6788(2017)04-0999-12 | |
21 | WU B, QIAN C H, NI W H, et al. The improvement of glowworm swarm optimization for continuous optimization problems[J]. Expert Systems with Applications, 2012, 39(7):6335-6342. 10.1016/j.eswa.2011.12.017 |
22 | LAXMA REDDY D L, PUTTAMADAPPA C, SURESH H N. Merged glowworm swarm with ant colony optimization for energy efficient clustering and routing in wireless sensor network[J]. Pervasive and Mobile Computing, 2021, 71: No.101338. 10.1016/j.pmcj.2021.101338 |
23 | FU K, YE J. Computation offloading based on improved glowworm swarm optimization algorithm in mobile edge computing[J]. Journal of Physics: Conference Series, 2021, 1757: No.012195. 10.1088/1742-6596/1757/1/012195 |
24 | BALASUBRAMANIAN K, ANANTHAMOORTHY N P. Improved adaptive neuro-fuzzy inference system based on modified glowworm swarm and differential evolution optimization algorithm for medical diagnosis[J]. Neural Computing and Applications, 2021, 33(13):7649-7660. 10.1007/s00521-020-05507-0 |
25 | FU K, GUO Z, YE J. Fire detection method based on improved glowworm swarm optimization-based TWSVM[C]// Proceedings of the 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy, AISC 1282. Cham: Springer, 2021:862-867. |
26 | JIE L, TENG L, YIN S L. An improved discrete firefly algorithm used for traveling salesman problem[C]// Proceedings of the 2017 International Conference on Swarm Intelligence, LNCS 10385. Cham: Springer, 2017:593-600. |
27 | CHUAH H S, WONG L P, HASSAN F H. Swap-based discrete firefly algorithm for traveling salesman problem[C]// Proceedings of the 2017 International Workshop on Multi-disciplinary Trends in Artificial Intelligence, LNCS 10607. Cham: Springer, 2017:409-425. |
28 | KOENKER R, MACHADO J A F. Goodness of fit and related inference processes for quantile regression[J]. Journal of the American Statistical Association, 1999, 94(448):1296-1310. 10.1080/01621459.1999.10473882 |
29 | 夏平凡,倪志伟,朱旭辉,等. 基于反向二元萤火虫算法和差异性测度的选择性集成方法[J]. 系统科学与数学, 2021, 41(3):730-746. 10.12341/jssms20111 |
XIA P F, NI Z W, ZHU X H, et al. Selective ensemble approach based on reverse binary glowworm swarm optimization and diversity measure[J]. Journal of Systems Science and Mathematical Sciences, 2021, 41(3):730-746. 10.12341/jssms20111 | |
30 | 冉家敏,倪志伟,彭鹏,等. 考虑空间众包工作者服务质量的任务分配策略及其萤火虫群优化算法求解[J]. 计算机应用, 2021, 40(3):794-802. |
RAN J M, NI Z W, PENG P, et al. Task allocation strategy considering service quality of spatial crowdsourcing workers and its glowworm swarm optimization algorithm solution[J]. Journal of Computer Applications, 2021, 40(3):794-802. | |
31 | 耿焕同,许可,戴中斌,等. 基于双重贡献分配的多目标混合算子进化算法[J]. 控制与决策, 2022, 37(5):1195-1202. |
GENG H T, XU K, DAI Z B, et al. Multi-objective evolutionary algorithm with multiple operators based on double credit assignment[J]. Control and Decision, 2022, 37(5):1195-1202. | |
32 | 聚数力. Uber 纽约市乘车数据[DS/OL]. (2017-03-11) [2021-07-10]. . 10.1061/9780784481530.001 |
Dadaju. Uber pickups in New York City[DS/OL]. (2017-03-11) [2021-07-10]. . 10.1061/9780784481530.001 |
[1] | 马华, 陈跃鹏, 唐文胜, 娄小平, 黄卓轩. 面向工作者能力评估的众包任务分配方法的研究进展综述[J]. 《计算机应用》唯一官方网站, 2021, 41(8): 2232-2241. |
[2] | 冉家敏, 倪志伟, 彭鹏, 朱旭辉. 考虑空间众包工作者服务质量的任务分配策略及其萤火虫群优化算法求解[J]. 计算机应用, 2021, 41(3): 794-802. |
[3] | 杨玮, 李然, 张堃. 基于变邻域模拟退火算法的多自动导引车任务分配优化[J]. 计算机应用, 2021, 41(10): 3056-3062. |
[4] | 余敦辉, 袁旭, 张万山, 王晨旭. 基于动态阈值的时空众包在线分配算法[J]. 计算机应用, 2020, 40(3): 658-664. |
[5] | 韩俊樱, 张振宇, 孔德仕. 移动群智感知中面向用户区域的分布式多任务分配方法[J]. 《计算机应用》唯一官方网站, 2020, 40(2): 358-362. |
[6] | 秦海燕, 章永龙, 李斌. 社会网络下分配众包任务的真实机制[J]. 计算机应用, 2020, 40(10): 3019-3024. |
[7] | 杨正清, 周朝荣, 袁姝. 移动群智感知系统中基于离散布谷鸟搜索算法的任务分配[J]. 计算机应用, 2019, 39(9): 2778-2783. |
[8] | 张兴盛, 余敦辉, 张万山, 王晨旭. 时空众包环境下时效均衡的在线任务分配算法[J]. 计算机应用, 2019, 39(5): 1357-1363. |
[9] | 陈友玲, 左丽丹, 牛禹霏, 王龙. 基于知识相似度的产品开发任务分配方法[J]. 计算机应用, 2019, 39(2): 323-329. |
[10] | 李鑫滨, 章寿涛, 闫磊, 韩松. 基于鲁棒Restless Bandits模型的多水下自主航行器任务分配策略[J]. 计算机应用, 2019, 39(10): 2795-2801. |
[11] | 刘鹏飞, 毛莺池, 王龙宝. 基于云雾协作模型的任务分配方法[J]. 计算机应用, 2019, 39(1): 8-14. |
[12] | 赵焜松, 余敦辉, 张万山. 软件众包任务发布优先级计算方法[J]. 计算机应用, 2018, 38(7): 2032-2036. |
[13] | 刘辉, 李盛恩. 时空众包环境下基于统计预测的自适应阈值算法[J]. 计算机应用, 2018, 38(2): 415-420. |
[14] | 余敦辉, 王意, 张万山. 软件众包工人能力动态度量算法[J]. 计算机应用, 2018, 38(12): 3612-3617. |
[15] | 毛莺池, 穆超, 包威, 李晓芳. 空间众包中多类型任务的分配与调度方法[J]. 计算机应用, 2018, 38(1): 6-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||