针对航拍场景中包含的目标尺寸小、有效特征信息少的问题,提出一种基于改进的变焦网络VFNet(VariFocalNet)的航拍场景中微小目标检测算法。首先,为增强微小目标的特征表征能力,采用特征提取性能更好的循环层聚合网络(RLANet)代替ResNet作为主干网络;其次,为解决特征金字塔自顶向下融合时顶层特征信息丢失问题,引入特征增强模块(FEM);然后,为解决现有标签分配方法在微小目标标签分配上的样本分布不平衡问题,改进的VFNet采用了基于高斯感受野的标签分配方法;最后,为减小微小目标对位置偏移的敏感性,引入一种边界框回归损失函数Wasserstein损失测量预测边界框高斯分布和真值框高斯分布的相似性。在AI-TOD数据集上的实验结果表明:改进后的VFNet算法的平均精度均值(mAP)达到了14.9%;与改进前的算法相比,在航拍场景下的微小目标上的检测mAP提高了4.7个百分点。
为降低多机器人在动态环境下路径规划的阻塞率,基于深度强化学习方法框架Actor-Critic,设计一种基于请求与应答通信机制和局部注意力机制的分布式深度强化学习路径规划方法(DCAMAPF)。在Actor网络,基于请求与应答通信机制,每个机器人请求视野内的其他机器人的局部观测信息和动作信息,进而规划出协同的动作策略。在Critic网络,每个机器人基于局部注意力机制将注意力权重动态地分配到在视野内成功应答的其他机器人局部观测和动作信息上。实验结果表明,与传统动态路径规划方法D* Lite、最新的分布式强化学习方法MAPPER和最新的集中式强化学习方法AB-MAPPER相比,DCAMAPF在离散初始化环境,阻塞率均值均约降低了6.91、4.97、3.56个百分点;在集中初始化环境下能更高效地避免发生阻塞,阻塞率均值均约降低了15.86、11.71、5.54个百分点,并减少占用的计算缓存。所提方法确保了路径规划的效率,适用于求解不同动态环境下的多机器人路径规划任务。
针对多智能体在大型仓储环境中进行路径规划时,现有算法有智能体易陷入拥堵区域和耗时长的问题,提出一种改良的基于冲突搜索(CBS)算法。首先,优化现有单一的仓储环境建模方式,在易解决路径冲突的传统的栅格化建模的基础上,提出栅格-热力图的混合建模方式,并通过热力图定位仓储中的拥堵区域,从而解决多智能体易陷入拥堵区域的问题;其次,通过改良的CBS算法,快速求解大型仓储环境下的多智能体路径规划(MAPF)问题;最后,提出基于热力图的显示估计冲突搜索(HM-EECBS)算法。实验结果表明,在warehouse-20-40-10-2-2大型地图集上,当智能体数为500时,相较于显示估计冲突搜索(EECBS)算法和懒惰添加约束的MAPF算法(LaCAM)算法:HM-EECBS算法的求解时间分别减少了约88%和73%;当仓储中存在5%、10%的区域拥堵时,HM-EECBS算法的成功率分别提高了约49%、20%,这表明所提算法适用于解决大规模且拥堵的仓储物流环境下的MAPF问题。
针对通用目标检测场景下,现有单阶段无锚检测器识别精度低、识别困难等问题,提出一种基于改进变焦网络VFNet(VarifocalNet)的高精度目标检测算法。首先,利用循环层聚合网络(RLANet)替换VFNet用于特征提取的主干网络ResNet,循环残差连接操作将前层特征汇入后续网络层中提升特征的表征能力;其次,通过带有特征对齐卷积操作的特征金字塔网络(FPN)替换原始的特征融合网络,利用可变形卷积操作在FPN上下层融合过程中实现特征对齐并优化特征表征能力;最后,使用聚焦-全局蒸馏(FGD)算法进一步提升小规模算法的检测性能。在COCO (Common Objects in Context) 2017数据集上进行的评估实验结果表明,在相同训练条件下,改进后的以RLANet-50为主干的算法的均值平均精度(mAP)可以达到45.9%,与VFNet算法相比提升了4.3个百分点,而改进后的算法参数量为36.67×106,与VFNet相比仅高了4×106。可见,改进后的VFNet算法在提升检测精度的同时稍微增加了参数量,说明该算法可以满足目标检测的轻量化及高精度需求。
图神经网络(GNN)容易受到对抗性攻击而导致性能下降,影响节点分类、链路预测和社区检测等下游任务,因此GNN的防御方法具有重要研究价值。针对GNN在面对对抗性攻击时鲁棒性差的问题,以图卷积网络(GCN)为模型,提出一种改进的基于奇异值分解(SVD)的投毒攻击防御方法ISVDatt。在投毒攻击场景下,该方法可对扰动图进行净化处理。GCN遭受投毒攻击后,首先筛选并删除特征差异较大的连边使图保持特征光滑性;然后进行SVD和低秩近似操作使扰动图保持低秩性,并完成对它的净化处理;最后将净化后的扰动图用于GCN模型训练,从而实现对投毒攻击的有效防御。在开源的Citeseer、Cora和Pubmed数据集上针对Metattack和DICE(Delete Internally, Connect Externally)攻击进行实验,并与基于SVD、Pro_GNN和鲁棒图卷积网络(RGCN)的防御方法进行了对比,结果显示ISVDatt的防御效果相对较优,虽然分类准确率比Pro_GNN低,但复杂度低,时间开销可以忽略不计。实验结果表明ISVDatt能有效抵御投毒攻击,兼顾算法的复杂度和通用性,具有较高的实用价值。
多处理器系统互连网络的拓扑性质对系统功能的实现起着重要的作用。k元n方体网络的子网络可靠性是以k元n方体为拓扑结构构建的多处理器系统处理计算任务时需要考虑的一个重要因素。为了精确高效地度量概率故障条件下k元n方体中k元(n-1)方体子网络的可靠性,提出基于反向传播(BP)神经网络的k元(n-1)方体子网络可靠性的近似评估方法。首先,利用蒙特卡洛仿真方法和k元(n-1)方体子网络可靠性的已有上下界给出用于训练BP神经网络的数据集的生成方法;其次,基于生成的训练数据集构造用于评估k元(n-1)方体子网络可靠性的BP神经网络模型;最后,对BP神经网络模型得出的k元(n-1)方体子网络可靠性的近似评估结果进行了分析,并与近似计算公式和基于蒙特卡洛的评估方法的结果进行了对比。与近似计算公式相比,所提方法得出的结果更为精确;与基于蒙特卡洛的评估方法相比,所提方法的评估耗时平均减少了约59%。实验结果表明,所提方法在兼顾精度和效率方面具有一定优势。
研究多机器人任务分配(MRTA)的目的是提高智能工厂中机器人完成任务的效率。针对现有算法在处理大规模、多约束的MRTA时存在不足的问题,提出一种结合遗传算法和滚动调度的MRTA算法(ACGARS)。首先,在遗传算法中采用基于有向无环图(DAG)的编码方式高效地处理任务之间的优先级约束;其次,在遗传算法的初始种群中加入先验知识以提高算法的搜索效率;最后,设计基于任务组的滚动调度策略用于减小求解问题的规模,从而实现对大规模问题的高效求解。在大规模问题实例上的实验结果表明,相较于构造性启发式算法(CHA)、最小化干扰算法(MIA)和基于惩罚策略的遗传算法(GAPS)生成的方案,当任务组数为20时,所提算法生成的方案的平均订单完成时间分别缩短了30.02%、16.86%和75.65%,验证了所提算法能有效地缩短订单的平均等待时间,提升多机器人任务分配效率。
针对目前图像缺陷检测模型对长尾缺陷数据集中尾部类检测效果较差的问题,提出一个基于梯度引导加权?延迟负梯度衰减损失(GGW-DND Loss)。首先,根据检测器分类节点的累积梯度比值分别对正负梯度重新加权,减轻尾部类分类器的受抑制状态;其次,当模型优化到一定阶段时,直接降低每个节点产生的负梯度,以增强尾部类分类器的泛化能力。实验结果表明,在自制图像缺陷数据集和NEU-DET(NEU surface defect database for Defect Detection Task)上,所提损失的尾部类平均精度均值(mAP)优于二分类交叉熵损失(BCE Loss),分别提高了32.02和7.40个百分点;与EQL v2(EQualization Loss v2)相比,分别提高了2.20和0.82个百分点,验证了所提损失能有效提升网络对尾部类的检测性能。
针对当前图摘要方法压缩率较高,图压缩算法无法直接被用于下游任务分析的问题,提出一种图摘要与图压缩的融合算法,即基于节点相似性分组与图压缩的图摘要算法(GSNSC)。首先,初始化节点为超节点,并根据相似度对超节点分组;其次,将每个组的超节点合并,直到达到指定次数或指定节点数;再次,在超节点之间添加超边和校正边以恢复原始图;最后,对于图压缩部分,判断对每个超节点的邻接边压缩和摘要的代价,并选择二者中代价较小的执行。在Web-NotreDame、Web-Google和Web-Berkstan等6个数据集上进行了图压缩率和图查询实验。实验结果表明,在6个数据集上,与SLUGGER(Scalable Lossless sUmmarization of Graphs with HiERarchy)算法相比,所提算法的压缩率至少降低了23个百分点;与SWeG(Summarization of Web-scale Graphs)算法相比,所提算法的压缩率至少降低了13个百分点;在Web-NotreDame数据集上,所提算法的度误差比SWeG降低了41.6%。以上验证了所提算法具有更好的图压缩率和图查询准确度。
传统的多标签分类算法是以二值标签预测为基础的,而二值标签由于仅能指示数据是否具有相关类别,所含语义信息较少,无法充分表示标签语义信息。为充分挖掘标签空间的语义信息,提出了一种基于非负矩阵分解和稀疏表示的多标签分类算法(MLNS)。该算法结合非负矩阵分解与稀疏表示技术,将数据的二值标签转化为实值标签,从而丰富标签语义信息并提升分类效果。首先,对标签空间进行非负矩阵分解以获得标签潜在语义空间,并将标签潜在语义空间与原始特征空间结合以形成新的特征空间;然后,对此特征空间进行稀疏编码来获得样本间的全局相似关系;最后,利用该相似关系重构二值标签向量,从而实现二值标签与实值标签的转化。在5个标准多标签数据集和5个评价指标上将所提算法与MLBGM、ML2、LIFT和MLRWKNN等算法进行对比。实验结果表明,所提MLNS在多标签分类中优于对比的多标签分类算法,在50%的案例中排名第一,在76%的案例中排名前二,在全部的案例中排名前三。
垃圾信息的识别是自然语言处理方面主要的任务之一。传统方法是基于文本特征或词频的方法,其识别准确率主要依赖于特定关键词的出现与否,存在对关键词识别错误或对未出现关键词的垃圾信息文本识别能力较差的问题,提出基于神经网络的方法。首先,利用传统方法针对这一类垃圾信息文本进行识别训练和测试;然后,利用从垃圾短信、广告和垃圾邮件数据集中挑选出传统方法识别困难的垃圾信息,再从原数据集中随机挑选出同样数量的正常信息,将其组成三个无重复数据的新数据集;最后,以卷积神经网络和循环神经网络为基础,建立了三个模型,并在新数据集上进行识别训练。实验结果表明,基于神经网络的方法可以从文本中学习到更好的语义特征,在三个数据集上均能达到98%以上的准确率,高于朴素贝叶斯(NB)、随机森林(RF)、支持向量机(SVM)等传统方法。实验结果还显示,不同的神经网络适用于不同长度的文本分类,由循环神经网络组成的模型擅长识别句子长度的文本,由卷积神经网络组成的模型擅长识别段落长度的文本,由两者共同组成的模型擅长识别篇章长度的文本。