Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (2): 369-376.DOI: 10.11772/j.issn.1001-9081.2023020185
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                    Tian CHEN1,2,3( ), Conghu CAI1,2,3, Xiaohui YUAN1,4, Beibei LUO1,2,3
), Conghu CAI1,2,3, Xiaohui YUAN1,4, Beibei LUO1,2,3
												  
						
						
						
					
				
Received:2023-02-27
															
							
																	Revised:2023-04-02
															
							
																	Accepted:2023-04-07
															
							
							
																	Online:2024-02-22
															
							
																	Published:2024-02-10
															
							
						Contact:
								Tian CHEN   
													About author:CAI Conghu, born in 1998, M. S. candidate. His research interests include affective computing, artificial intelligence, design for testability, low-power test.Supported by:
        
                   
            陈田1,2,3( ), 蔡从虎1,2,3, 袁晓辉1,4, 罗蓓蓓1,2,3
), 蔡从虎1,2,3, 袁晓辉1,4, 罗蓓蓓1,2,3
                  
        
        
        
        
    
通讯作者:
					陈田
							作者简介:蔡从虎(1998—),男,安徽宿州人,硕士研究生,主要研究方向:情感计算、人工智能、可测试性设计、低功耗测试基金资助:CLC Number:
Tian CHEN, Conghu CAI, Xiaohui YUAN, Beibei LUO. Multimodal emotion recognition method based on multiscale convolution and self-attention feature fusion[J]. Journal of Computer Applications, 2024, 44(2): 369-376.
陈田, 蔡从虎, 袁晓辉, 罗蓓蓓. 基于多尺度卷积和自注意力特征融合的多模态情感识别方法[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 369-376.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023020185
| 频带 | 频率范围/Hz | 大脑活动状态 | 
|---|---|---|
| δ | [0.5,4) | 和深度睡眠有关活动 | 
| θ | [4,8) | 睡意、冥想状态 | 
| α | [8,16) | 清醒时闭眼、处于放松状态 | 
| β | [16,32) | 注意力集中、情绪波动 | 
| γ | [32,45) | 激动、亢奋或强烈的情绪状态 | 
Tab. 1 Brain activities corresponding to different frequency bands of EEG
| 频带 | 频率范围/Hz | 大脑活动状态 | 
|---|---|---|
| δ | [0.5,4) | 和深度睡眠有关活动 | 
| θ | [4,8) | 睡意、冥想状态 | 
| α | [8,16) | 清醒时闭眼、处于放松状态 | 
| β | [16,32) | 注意力集中、情绪波动 | 
| γ | [32,45) | 激动、亢奋或强烈的情绪状态 | 
| 提取方法 | Valence | Arousal | ||
|---|---|---|---|---|
| ACC | STD | ACC | STD | |
| SVM | 52.28 | 12.11 | 53.92 | 11.74 | 
| CNN | 62.84 | 10.24 | 65.97 | 9.98 | 
| 1D⁃Inception | 81.26 | 8.77 | 83.97 | 7.91 | 
Tab. 2 Accuracy comparison of 1D-Inception with other feature extraction methods
| 提取方法 | Valence | Arousal | ||
|---|---|---|---|---|
| ACC | STD | ACC | STD | |
| SVM | 52.28 | 12.11 | 53.92 | 11.74 | 
| CNN | 62.84 | 10.24 | 65.97 | 9.98 | 
| 1D⁃Inception | 81.26 | 8.77 | 83.97 | 7.91 | 
| 长度 | Valence | Arousal | ||
|---|---|---|---|---|
| ACC | STD | ACC | STD | |
| 1 | 76.48 | 8.39 | 73.44 | 7.61 | 
| 3 | 80.00 | 6.27 | 65.97 | 9.90 | 
| 6 | 90.29 | 6.28 | 91.38 | 6.02 | 
| 10 | 89.92 | 6.49 | 90.08 | 6.07 | 
| 15 | 85.12 | 6.11 | 88.30 | 5.98 | 
Tab. 3 Comparison of experimental results with different sequence lengths of Bi-LSTM
| 长度 | Valence | Arousal | ||
|---|---|---|---|---|
| ACC | STD | ACC | STD | |
| 1 | 76.48 | 8.39 | 73.44 | 7.61 | 
| 3 | 80.00 | 6.27 | 65.97 | 9.90 | 
| 6 | 90.29 | 6.28 | 91.38 | 6.02 | 
| 10 | 89.92 | 6.49 | 90.08 | 6.07 | 
| 15 | 85.12 | 6.11 | 88.30 | 5.98 | 
| 多模态 融合方法 | Valence | Arousal | V/A四分类 | |||
|---|---|---|---|---|---|---|
| ACC | STD | ACC | STD | ACC | STD | |
| 直接融合 | 84.77 | 7.76 | 86.92 | 7.74 | 75.26 | 13.42 | 
| 决策层融合 | 85.26 | 7.21 | 88.30 | 6.98 | 79.55 | 10.29 | 
| 自注意力融合 | 90.29 | 6.28 | 91.38 | 6.02 | 83.53 | 9.77 | 
Tab. 4 Accuracy comparison between self-attention-based fusion method and other fusion methods
| 多模态 融合方法 | Valence | Arousal | V/A四分类 | |||
|---|---|---|---|---|---|---|
| ACC | STD | ACC | STD | ACC | STD | |
| 直接融合 | 84.77 | 7.76 | 86.92 | 7.74 | 75.26 | 13.42 | 
| 决策层融合 | 85.26 | 7.21 | 88.30 | 6.98 | 79.55 | 10.29 | 
| 自注意力融合 | 90.29 | 6.28 | 91.38 | 6.02 | 83.53 | 9.77 | 
| 使用模态 | Valence | Arousal | V/A四分类 | |||
|---|---|---|---|---|---|---|
| ACC | STD | ACC | STD | ACC | STD | |
| EEG | 84.17 | 7.40 | 87.92 | 7.23 | 76.42 | 10.47 | 
| ECG | 77.84 | 10.24 | 69.97 | 9.98 | 45.39 | 11.20 | 
| 眼动信号 | 65.20 | 12.01 | 70.13 | 11.89 | 39.28 | 13.09 | 
| EEG+ECG双模态 | 89.37 | 6.97 | 88.23 | 6.73 | 82.26 | 9.97 | 
| EEG+眼动双模态 | 84.79 | 7.82 | 86.30 | 7.54 | 78.10 | 10.59 | 
| 三模态(本文方法) | 90.29 | 6.28 | 91.38 | 6.02 | 83.53 | 9.77 | 
Tab. 5 Accuracy comparison between multimodal method with unimodal and bimodal methods
| 使用模态 | Valence | Arousal | V/A四分类 | |||
|---|---|---|---|---|---|---|
| ACC | STD | ACC | STD | ACC | STD | |
| EEG | 84.17 | 7.40 | 87.92 | 7.23 | 76.42 | 10.47 | 
| ECG | 77.84 | 10.24 | 69.97 | 9.98 | 45.39 | 11.20 | 
| 眼动信号 | 65.20 | 12.01 | 70.13 | 11.89 | 39.28 | 13.09 | 
| EEG+ECG双模态 | 89.37 | 6.97 | 88.23 | 6.73 | 82.26 | 9.97 | 
| EEG+眼动双模态 | 84.79 | 7.82 | 86.30 | 7.54 | 78.10 | 10.59 | 
| 三模态(本文方法) | 90.29 | 6.28 | 91.38 | 6.02 | 83.53 | 9.77 | 
| 方法 | 准确率 | 方法 | 准确率 | ||
|---|---|---|---|---|---|
| Valence | Arousal | Valence | Arousal | ||
| 文献[ | 76.56 | 80.46 | 文献[ | 86.61 | 85.34 | 
| 文献[ | 84.00 | 72.00 | 文献[ | 91.82 | 88.24 | 
| 文献[ | 85.38 | 77.52 | 本文方法 | 90.29 | 91.38 | 
Tab. 6 Accuracy comparison with existing physiological signal-based emotion recognition methods
| 方法 | 准确率 | 方法 | 准确率 | ||
|---|---|---|---|---|---|
| Valence | Arousal | Valence | Arousal | ||
| 文献[ | 76.56 | 80.46 | 文献[ | 86.61 | 85.34 | 
| 文献[ | 84.00 | 72.00 | 文献[ | 91.82 | 88.24 | 
| 文献[ | 85.38 | 77.52 | 本文方法 | 90.29 | 91.38 | 
| 1 | JENKE R, PEER A, BUSS M. Feature extraction and selection for emotion recognition from EEG [J]. IEEE Transactions on Affective Computing, 2014, 5(3): 327-339. 10.1109/taffc.2014.2339834 | 
| 2 | KRUMPAL I. Determinants of social desirability bias in sensitive surveys: A literature review [J]. Quality & Quantity, 2013, 47: 2025-2047. 10.1007/s11135-011-9640-9 | 
| 3 | BOULAY B. Towards a motivationally intelligent pedagogy: How should an intelligent tutor respond to the unmotivated or the demotivated? [C]// New Perspectives on Affect and Learning Technologies. New York: Springer, 2011, 3: 41-52. 10.1007/978-1-4419-9625-1_4 | 
| 4 | ZHAO G, GE Y, SHEN B, et al. Emotion analysis for personality inference from EEG signals [J]. IEEE Transactions on Affective Computing, 2018, 9(3): 362-371. 10.1109/taffc.2017.2786207 | 
| 5 | CHAO H, DONG L. Emotion recognition using three-dimensional feature and convolutional neural network from multichannel EEG signals [J]. IEEE Sensors Journal, 2021, 21(2): 2024-2034. 10.1109/jsen.2020.3020828 | 
| 6 | SONG T, ZHENG W, SONG P, et al. EEG emotion recognition using dynamical graph convolutional neural networks [J]. IEEE Transactions on Affective Computing, 2020, 11(3): 532-541. 10.1109/taffc.2018.2817622 | 
| 7 | CHEN T, YIN H, YUAN X, et al. Emotion recognition based on fusion of long short-term memory networks and SVMs [J]. Digital Signal Processing, 2021, 117: 103153. 10.1016/j.dsp.2021.103153 | 
| 8 | KATSIGIANNIS S, RAMZAN N. DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices [J]. IEEE Journal of Biomedical and Health Informatics, 2017, 22(1): 98-107. 10.1109/jbhi.2017.2688239 | 
| 9 | CHEN T, JU S, REN F, et al. EEG emotion recognition model based on the LIBSVM classifier [J]. Measurement, 2020, 164: 108047. 10.1016/j.measurement.2020.108047 | 
| 10 | 陈田,樊明焱,任福继,等.采用瞳孔位置实现情感识别的方案[J].计算机应用研究,2021,38(6):1765-1769. 10.19734/j.issn.1001-3695.2020.06.0165 | 
| CHEN T, FAN M Y, REN F J, et al. Emotion recognition using pupil position [J]. Application Research of Computers, 2021, 38(6): 1765-1769. 10.19734/j.issn.1001-3695.2020.06.0165 | |
| 11 | ALARCÃO S M, FRONSECA M J. Emotions recognition using EEG signals: a survey [J]. IEEE Transactions on Affective Computing, 2017, 10(3): 374-393. | 
| 12 | SINGSON L N B, SANCHEZ M T U R, VILLAVERDE J F. Emotion recognition using short-term analysis of heart rate variability and ResNet architecture [C]// Proceedings of the 2021 13th International Conference on Computer and Automation Engineering. Piscataway: IEEE, 2021: 15-18. 10.1109/iccae51876.2021.9426094 | 
| 13 | CHEN J X, ZHANG P W, MAO Z J, et al. Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks [J]. IEEE Access, 2019, 7: 44317-44328. 10.1109/access.2019.2908285 | 
| 14 | KOELSTRA S, MUHL C, SOLEYMANI M, et al. DEAP: a database for emotion analysis; using physiological signals [J]. IEEE Transactions on Affective Computing, 2011, 3(1): 18-31. 10.1109/t-affc.2011.15 | 
| 15 | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. 10.1109/cvpr.2015.7298594 | 
| 16 | SANTAMARÍA-VÁZQUEZ E, MARTÍNEZ-CAGIGAL V, VAQUERIZO-VILLAR F, et al. EEG-inception: a novel deep convolutional neural network for assistive ERP-based brain-computer interfaces [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(12): 2773-2782. 10.1109/tnsre.2020.3048106 | 
| 17 | LEE D-Y, J-H JEONG, K-H SHIM, et al. Classification of upper limb movements using convolutional neural network with 3D inception block [C]// Proceedings of the 2020 8th International Winter Conference on Brain-Computer Interface. Piscataway: IEEE, 2020: 1-5. 10.1109/bci48061.2020.9061671 | 
| 18 | Y-H KWON, S-B SHIN, KIM S-D. Electroencephalography based fusion Two-Dimensional (2D)-Convolution Neural Networks (CNN) model for emotion recognition system [J]. Sensors, 2018, 18(5): 1383. 10.3390/s18051383 | 
| 19 | TAO W, LI C, SONG R, et al. EEG-based emotion recognition via channel-wise attention and self attention [J]. IEEE Transactions on Affective Computing, 2023, 14(1): 382-393. 10.1109/taffc.2020.3025777 | 
| 20 | DZEDZICKIS A, KAKLAUSKAS A, BUCINSKAS V. Human emotion recognition: Review of sensors and methods [J]. Sensors, 2020, 20(3): 592. 10.3390/s20030592 | 
| 21 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 448-456. | 
| 22 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [EB/OL]. (2017-12-06)[2023-02-01]. . | 
| 23 | DALY I, WILLIAMS D, MALIK A, et al. Personalised, multi-modal, affective state detection for hybrid brain-computer music interfacing [J]. IEEE Transactions on Affective Computing, 2018, 11(1): 111-124. | 
| 24 | DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation by wavelet shrinkage [J]. Biometrika, 1994, 81(3): 425-455. 10.1093/biomet/81.3.425 | 
| 25 | DIKKER S, WAN L, DAVIDESCO I, et al. Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom [J]. Current Biology, 2017, 27(9): 1375-1380. 10.1016/j.cub.2017.04.002 | 
| 26 | LI W, CHU M, QIAO J. Design of a hierarchy modular neural network and its application in multimodal emotion recognition [J]. Soft Computing, 2019, 23: 11817-11828. 10.1007/s00500-018-03735-0 | 
| 27 | WU X, ZHENG W-L, LI Z, et al. Investigating EEG-based functional connectivity patterns for multimodal emotion recognition [J]. Journal of Neural Engineering, 2022, 19: 016012. 10.1088/1741-2552/ac49a7 | 
| 28 | 李路宝,陈田,任福继,等.基于图神经网络和注意力的双模态情感识别方法[J].计算机应用,2023,43(3):700-705. 10.11772/j.issn.1001-9081.2022020216 | 
| LI L B, CHEN T, REN F J, et al. Bimodal emotion recognition method based on graph neural network and attention [J]. Journal of Computer Applications, 2023, 43(3): 700-705. 10.11772/j.issn.1001-9081.2022020216 | |
| 29 | PEREIRA E T, GOMES H M, VELOSO L R, et al. Empirical evidence relating EEG signal duration to emotion classification performance [J]. IEEE Transactions on Affective Computing, 2021, 12(1): 154-164. 10.1109/taffc.2018.2854168 | 
| [1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. | 
| [2] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. | 
| [3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. | 
| [4] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. | 
| [5] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. | 
| [6] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. | 
| [7] | Fan YANG, Yao ZOU, Mingzhi ZHU, Zhenwei MA, Dawei CHENG, Changjun JIANG. Credit card fraud detection model based on graph attention Transformation neural network [J]. Journal of Computer Applications, 2024, 44(8): 2634-2642. | 
| [8] | Hao CHAO, Shuqi FENG, Yongli LIU. Convolutional recurrent neural network optimized by multiple context vectors in EEG-based emotion recognition [J]. Journal of Computer Applications, 2024, 44(7): 2041-2046. | 
| [9] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. | 
| [10] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. | 
| [11] | Juxiang ZHOU, Jinsheng LIU, Jianhou GAN, Di WU, Zijie LI. Classroom speech emotion recognition method based on multi-scale temporal-aware network [J]. Journal of Computer Applications, 2024, 44(5): 1636-1643. | 
| [12] | Zihan LIU, Dengwen ZHOU, Yukai LIU. Image super-resolution network based on global dependency Transformer [J]. Journal of Computer Applications, 2024, 44(5): 1588-1596. | 
| [13] | Rong HUANG, Junjie SONG, Shubo ZHOU, Hao LIU. Image aesthetic quality evaluation method based on self-supervised vision Transformer [J]. Journal of Computer Applications, 2024, 44(4): 1269-1276. | 
| [14] | Zhanjun JIANG, Baijing WU, Long MA, Jing LIAN. Faster-RCNN water-floating garbage recognition based on multi-scale feature and polarized self-attention [J]. Journal of Computer Applications, 2024, 44(3): 938-944. | 
| [15] | Ziqi HUANG, Jianpeng HU. Entity category enhanced nested named entity recognition in automotive domain [J]. Journal of Computer Applications, 2024, 44(2): 377-384. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||