计算机应用 ›› 2014, Vol. 34 ›› Issue (1): 249-254.DOI: 10.11772/j.issn.1001-9081.2014.01.0249
WANG Chunlong1,ZHANG Jingxu2
摘要: 针对传统K-means算法初始聚类中心选择的随机性可能导致迭代次数增加、陷入局部最优和聚类结果不稳定现象的缺陷,提出一种基于隐含狄利克雷分布(LDA)主题概率模型的初始聚类中心选择算法。该算法选择蕴含在文本集中影响程度最大的前m个主题,并在这m个主题所在的维度上对文本集进行初步聚类,从而找到聚类中心,然后以这些聚类中心为初始聚类中心对文本集进行所有维度上的聚类,理论上保证了选择的初始聚类中心是基于概率可确定的。实验结果表明改进后算法聚类迭代次数明显减少,聚类结果更准确。
中图分类号: