[1] SIEGEL R, MA J, ZOU Z H, JEMAL A. Cancer statistics, 2014[J]. A Cancer Journal for Clinicians, 2014, 64(1): 9-29. [2] WEST D, MANGIAMELI P, RAMPAL R, et al. Ensemble strategies for a medical diagnosis decision support system: a breast cancer diagnosis application [J]. European Journal of Operational Research, 2005, 162(2): 532-551. [3] CHEN H L, YANG B, LIU J, et al. A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis [J]. Expert System with Application, 2011, 38(7): 9014-9022. [4] WOLBERG W H, MANGASARIAN O L. Multisurface method of pattern separation for medical diagnosis applied to breast cytology [J]. Proceedings of the National Academy of Sciences, 1990, 87(23): 9193-9196. [5] QUINLAN J R. Improved use of continuous attributes in C4.5[J]. Journal of Artificial Intelligence Research, 1996,4(1):77-90. [6] PENA-REYES C A, SIPPER M. A fuzzy-genetic approach to breast cancer diagnosis [J]. Artificial Intelligence in Medicine, 1999, 17(2): 131-155. [7] SETIONO R. Generating concise and accurate classification rules for breast cancer diagnosis [J]. Artificial Intelligence in Medicine, 2000, 18(3): 205-219. [8] GOODMAN D E, BOGGESS L C, WATKINS A B. Artificial immune system classification of multiple-class problems [EB/OL]. [2014-10-10]. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.4865. [9] KONONENKO I. Inductive and Bayesian learning in medical diagnosis [J]. Applied Artificial Intelligence an International Journal, 1993, 7(4): 317-337. [10] SEWAK M, VAIDYA P, CHAN C C, et al. SVM approach to breast cancer classification[C]//IMSCCS 2007: Proceedings of the Second International Multi-Symposiums on Computer and Computational Sciences. Piscataway: IEEE Press, 2007: 32-37. [11] HAMILTON H J, SHAN N, CERCONE N. RIAC: a rule induction algorithm based on approximate classification [EB/OL]. [2014-10-10]. http://wiki.eecs.yorku.ca/course_archive/2014-15/F/4412/_media/9606.pdf. [12] ABONYI J, SZEIFERT F. Supervised fuzzy clustering for the identification of fuzzy classifiers [J]. Pattern Recognition Letters, 2003, 24(14): 2195-2207. [13] KARABATAK M, INCE M C. An expert system for detection of breast cancer based on association rules and neural network [J]. Expert Systems with Applications, 2009, 36(2): 3465-3469. [14] WANG Y, TETKO I V, HALL M A, et al. Gene selection from microarray data for cancer classification-a machine learning approach [J]. Computational Biology and Chemistry, 2005, 29(1): 37-46. [15] YAO Y. Decision-theoretic rough set models [C]//RSKT 2007: Proceedings of the Second International Conference on Rough Sets and Knowledge Technology, LNCS 4481. Berlin: Springer-Verlag, 2007: 1-12. [16] NOBLE W S. What is a support vector machine [J]. Nature Biotechnology, 2006, 24(12):1565-1567. [17] YAMAGUCHI D. Attribute dependency functions considering data efficiency [J]. International Journal of Approximate Reasoning, 2009, 51(1): 89-98. [18] POLAT K, GUNES S. Breast cancer diagnosis using least square support vector machine [J]. Digital Signal Processing, 2007, 17(4): 694-701. [19] SETIONO R. Generating concise and accurate classification rules for breast cancer diagnosis [J]. Artificial Intelligence in medicine, 2000, 18(3): 205-219. |