[1] ASSOCIATION A.2013 Alzheimer's disease facts and figures[J].Alzheimer's Dement,2013,9(2):208-245. [2] CHENG B,ZHANG D,CHEN S,et al.Semi-supervised multimodal relevance vector regression improves cognitive performance estimation from imaging and biological biomarkers[J].Neuroinformatics,2013,11(3):339-353. [3] ZHANG D,SHEN D.Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease[J].NeuroImage,2012,59(2):895-907. [4] YOUNG J,MODAT M,CARDOSO M J,et al.Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment[J].NeuroImage:Clinical,2013,2:735-745. [5] WESTMAN E,MUEHLBOECK J S,SIMMONS A.Combining MRI and CSF measures for classification of Alzheimer's disease and prediction of mild cognitive impairment conversion[J].NeuroImage,2012,62(1):229-238. [6] CHENG B,LIU M,SUK H,et al.Multimodal manifold-regularized transfer learning for MCI conversion prediction[J].Brain Imaging and Behavior,2015,9(4):913-926. [7] CHENG B,LIU M,ZHANG D,et al.Domain transfer learning for MCI conversion prediction[J].IEEE Transactions on Biomedical Engineering,2015,62(7):1805-1817. [8] JIE B,ZHANG D,CHENG B,et al.Manifold regularized multitask feature learning for multimodality disease classification[J].Human Brain Mapping,2015,36(2):489-507. [9] ZHOU J,LIU J,NARAYAN V A,et al.Modeling disease progression via multi-task learning[J].NeuroImage,2013,78(1):233-248. [10] WANG Y,FAN Y,BHATT P,et al.High-dimensional pattern regression using machine learning:from medical images to continuous clinical variables[J].NeuroImage,2010,50(4):1519-1535. [11] ZHANG D,SHEN D.Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers[J].PLoS One,2012,7(3):e33182. [12] ZHU X,SUK H,SHEN D.A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis[J].NeuroImage,2014,100(1):91-105. [13] WANG H,NIE F,HUANG H,et al.Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression[C]//MICCAI 2011:Proceedings of the 2011 International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin:Springer,2011:115-123. [14] CHENG B,ZHANG D,SHEN D.Domain transfer learning for MCI conversion prediction[C]//MICCAI 2012:Proceeding of the 2012 International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin:Springer,2012:82-90. [15] FILIPOVYCH R,DAVATZIKOS C.Semi-supervised pattern classification of medical images:application to Mild Cognitive Impairment (MCI)[J].NeuroImage,2011,55(3):1109-1119. [16] YE J, FARNUM M, YANG E, et al. Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data[J]. BMC Neurology, 2012, 12:1412-1446. [17] NEMIROVSKI A. Efficient methods in convex programming[J]. Mathematical Programming, 2009, 26(1):85-89. [18] CHANG C, LIN C. LIBSVM:a library for support vector machines[EB/OL].[2015-10-09]. http://wwwcsientuedutw/~cjlin/libsvm. [19] LIU J, JI S, YE J. SLEP:sparse learning with efficient projections[EB/OL].[2015-10-25]. http://wwwpublicasuedu/~jye02/Software/SLEP. [20] ZHANG D, WANG Y, ZHOU L, et al. Multimodal classification of Alzheimer's disease and mild cognitive impairment[J]. NeuroImage, 2011, 55(3):856-867. |