[1] 席庆彪,苏鹏,刘慧霞.基于A*算法的无人机航路规划算法[J].火力与指挥控制,2013,38(11):5-9.(XI Q B, SU P, LIU H X. Research on a path planning's method for UAV based on A* algorithm [J]. Fire Control & Command Control, 2013, 38(11):5-9.) [2] 占伟伟,王伟,陈能成,等. 一种利用改进A*算法的无人机航迹规划[J].武汉大学学报(信息科学版),2015,40(3):315-320.(ZHAN W W, WANG W, CHEN N C, et al. Path planning strategies for UAV based on improved A* algorithm [J]. Geomatics and Information Science of Wuhan University, 2015,40(3):315-320.) [3] 郑锐,冯振明,陆明泉.基于遗传算法的无人机航路规划优化研究[J].计算机仿真,2011,28(6):88-91.(ZHENG R, FENG Z M, LU M Q. Application of particle genetic algorithm to path planning of unmanned aerial vehicle [J]. Computer Simulation, 2011, 28(6): 88-91.) [4] 孟祥恒,王社伟,陶军.基于改进蚁群算法的多无人机航路规划研究[J].计算机仿真,2008,25(11):56-59.(MENG X H, WANG S W, TAO J. Cooperative route planning for UCAVs using Voronoi based multi-behavior ant colony algorithm [J]. Computer Simulation, 2008, 25(11): 56-59.) [5] 高曼,刘以安,张强.优化蚁群算法在反舰导弹航路规划中的应用[J].计算机应用,2012,32(9):2530-2533.(GAO M, LIU Y A, ZHANG Q. Application of improved ant colony algorithm to route planning of anti-ship missile [J]. Journal of Computer Applications, 2012, 32(9): 2530-2533.) [6] RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems [J]. Computer-Aided Design, 2011, 43(3): 303-315. [7] RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems [J]. Information Sciences, 2012, 183(1): 1-15. [8] RAO R V, SAVSANI V J, BALIC J. Teaching-learning-based optimization algorithm for unconstrained and constrained real parameter optimization problems [J]. Engineering Optimization, 2012, 44(12): 1-16. [9] 拓守恒,雍龙泉,邓方安."教与学"优化算法研究综述[J].计算机应用研究,2013,30(7):1933-1938.(TUO S H, YONG L Q, DENG F A. Survey of teaching-learning-based optimization algorithms [J]. Application Research of Computers, 2013, 30(7):1933-1938.) [10] 饶跃东.基于改进蚁群算法的无人飞行器航迹规划应用研究[D].武汉:武汉理工大学,2010:44-46.(RAO Y D. Application research of route planning of UAV based on improved ant colony algorithm [D].Wuhan: Wuhan University of Technology, 2010:22-24.) [11] 吴静.多无人机协同航迹规划及效能评估方法研究[D].南昌:南昌航空大学,2012:19-20.(WU J. Research on trajectory planning and effectiveness evaluation for multi-UAV cooperative [D]. Nanchang: Nanchang Aviation University, 2012:35-37.) [12] 高立群,欧阳海滨,孔祥勇,等.带有交叉操作的教-学优化算法[J].东北大学学报(自然科学版),2014,35(3):323-327.(GAO L Q, OU-YANG H B, KONG X Y, et al. Teaching-learning based optimization algorithm with crossover operation [J]. Journal of Northeastern University (Natural Science), 2014, 35(3):323-327.) [13] 袁桂霞.改进的交叉算子在遗传算法中的研究及应用[J].江苏广播电视大学学报, 2011,22(5):54-57. (YUAN G X. Research and application of improved crossover in genetic algorithm [J]. Journal of Jiangsu Radio & Television University, 2011, 22(5): 54-57.) [14] 祖伟.基于粒子群优化算法的水下潜器实时路径规划技术研究[D].哈尔滨:哈尔滨工业大学,2008:26-28. (ZU W. Real-time path planning system based on PSO for underwater vehicles [D]. Harbin: Harbin Engineering University, 2008:26-28.) [15] 胡中华.基于智能优化算法的无人机航迹规划若干关键技术研究[D].南京:南京航空航天大学,2011:100-103.(HU Z H. Research on some key techniques of UAV path planning based on intelligent optimization algorithm [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011:100-103.) |