[1] AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases[J]. ACM SIGMOD Record, 1993, 22(2):207-216. [2] HAN J W, PEI J, YIN Y W. Mining frequent patterns without candidate generation[J].ACM SIGMOD Record, 2000, 29(2):1-12. [3] AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules in large databases[C]//Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco, CA:Morgan Kaufmann Publishers Inc., 1994:487-499. [4] 李也白, 唐辉, 张淳,等. 基于改进的FP-tree的频繁模式挖掘算法[J]. 计算机应用, 2011, 31(1):101-103. (LI Y B, TANG H, ZHANG C, et. al. Frequent pattern mining algorithm based on improved FP-tree[J]. Journal of Computer Applications, 2011, 31(1):101-103.) [5] LIU M, QU J. Mining high utility itemsets without candidate generation[C]//Proceedings of the 21st ACM International Conference on Information and Knowledge Management. New York:ACM, 2012:55-64. [6] FOURNIER-VIGER P, WU C W, ZIDA S, et al. FHM:faster high-utility itemset mining using estimated utility co-occurrence pruning[C]//Proceedings of the 21st International Symposium Foundations of Intelligent Systems. Berlin:Springer, 2014:83-92. [7] KRISHNAMOORTHY S. Pruning strategies for mining high utility itemsets[J]. Expert Systems with Applications, 2015, 42(5):2371-2381. [8] YAO H, HAMILTON H J, BUTZ C J. A foundational approach to mining itemset utilities from databases[C]//Proceedings of the 2004 SIAM International Conference on Data Mining. Philadelphia, PA:SIAM, 2004, 4:215-221. [9] LIU Y, LIAO W, CHOUDHARY A. A two-phase algorithm for fast discovery of high utility itemsets[C]//Proceedings of the 9th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Heidelberg:Springer-Verlag, 2005:689-695. [10] TSENG V S, SHIE B E, WU C W, et al. Efficient algorithms for mining high utility itemsets from transactional databases[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(8):1772-1786. [11] TSENG V S, WU C W, SHIE B E, et al. UP-Growth:an efficient algorithm for high utility itemset mining[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2010:253-262. [12] 祝孔涛, 李兴建, 王乐. 高效用项集挖掘算法[J]. 计算机工程与设计, 2013, 34(12):4220-4225.(ZHU K T, LI X J, WANG L. Improved algorithm for mining high utility itemsets[J]. Computer Engineering and Design, 2013, 34(12):4220-4225.) [13] HONG T P, LEE C H, WANG S L. Effective utility mining with the measure of average utility[J]. Expert Systems with Applications, 2011, 38(7):8259-8265. [14] LIN C W, HONG T P, LU W H. Efficiently mining high average utility itemsets with a tree structure[M]//Proceedings of the 2nd International Conference on Intelligent Information and Database Systems. Berlin:Springer-Verlag, 2010:131-139. [15] LAN G C, HONG T P, TSENG V S. A projection-based approach for discovering high average-utility itemsets[J]. Journal of Information Science and Engineering, 2012, 28(1):193-209. [16] LU T, VO B, NGUYEN H T, et al. A new method for mining high average utility itemsets[C]//Proceedings of the 13th IFIP TC8 International Conference on Computer Information Systems and Industrial Management. Berlin:Springer, 2014:33-42. [17] LIN J C W, LI T, FOURNIER-VIGER P, et al. An efficient algorithm to mine high average-utility itemsets[J]. Advanced Engineering Informatics, 2016, 30(2):233-243. |