《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (2): 477-484.DOI: 10.11772/j.issn.1001-9081.2023030268
所属专题: 数据科学与技术
收稿日期:
2023-03-13
修回日期:
2023-05-17
接受日期:
2023-05-29
发布日期:
2023-06-16
出版日期:
2024-02-10
通讯作者:
武优西
作者简介:
杨克帅(1998—),男,河南濮阳人,硕士研究生,CCF会员,主要研究方向:数据挖掘基金资助:
Keshuai YANG1, Youxi WU1(), Meng GENG1, Jingyu LIU1, Yan LI2
Received:
2023-03-13
Revised:
2023-05-17
Accepted:
2023-05-29
Online:
2023-06-16
Published:
2024-02-10
Contact:
Youxi WU
About author:
YANG Keshuai, born in 1998, M. S. candidate. His research interests include data mining.Supported by:
摘要:
针对传统序列模式挖掘(SPM)不考虑模式重复性且忽略各项的效用(单价或利润)与模式长度对用户兴趣度影响的问题,提出一次性条件下top-k高平均效用序列模式挖掘(TOUP)算法。TOUP算法主要包括两个核心步骤:平均效用计算和候选模式生成。首先,提出基于各项出现位置与项重复关系数组的CSP(Calculation Support of Pattern)算法计算模式支持度,从而实现模式平均效用的快速计算;其次,采用项集扩展和序列扩展生成候选模式,并提出了最大平均效用上界,基于该上界实现对候选模式的有效剪枝。在5个真实数据集和1个合成数据集上的实验结果表明,相较于TOUP-dfs和HAOP-ms算法,TOUP算法的候选模式数分别降低了38.5%~99.8%和0.9%~77.6%;运行时间分别降低了33.6%~97.1%和57.9%~97.2%。TOUP的算法性能更优,能更高效地挖掘用户感兴趣的模式。
中图分类号:
杨克帅, 武优西, 耿萌, 刘靖宇, 李艳. 一次性条件下top-k高平均效用序列模式挖掘算法[J]. 计算机应用, 2024, 44(2): 477-484.
Keshuai YANG, Youxi WU, Meng GENG, Jingyu LIU, Yan LI. Top-k high average utility sequential pattern mining algorithm under one-off condition[J]. Journal of Computer Applications, 2024, 44(2): 477-484.
序列号 | 序列 |
---|---|
(1,ab)(2,a)(3,abc)(4,ab)(5,ad)(6,cd) | |
(1,bd)(2,ab)(3,acd)(4,abc)(5,ac)(6,ac) |
表1 序列数据库D
Tab. 1 Sequence database D
序列号 | 序列 |
---|---|
(1,ab)(2,a)(3,abc)(4,ab)(5,ad)(6,cd) | |
(1,bd)(2,ab)(3,acd)(4,abc)(5,ac)(6,ac) |
数据集 | 类型 | 序列数 | 项目数 | 项集数 | 总长度 |
---|---|---|---|---|---|
SDB1 | 项集序列 | 5 026 | 6 | 55 524 | 140 182 |
SDB2 | 项集序列 | 1 248 | 276 | 8 134 | 73 206 |
SDB3 | 项集序列 | 1 096 | 5 390 | 6 111 | 54 999 |
SDB4 | 项集序列 | 69 | 2 520 | 178 | 1 403 |
SDB5 | 单项序列 | 668 | 231 | 35 100 | 35 100 |
SDB6 | 单项序列 | 1 663 | 6 417 | 57 852 | 57 852 |
表3 实验数据集
Tab. 3 Experimental datasets
数据集 | 类型 | 序列数 | 项目数 | 项集数 | 总长度 |
---|---|---|---|---|---|
SDB1 | 项集序列 | 5 026 | 6 | 55 524 | 140 182 |
SDB2 | 项集序列 | 1 248 | 276 | 8 134 | 73 206 |
SDB3 | 项集序列 | 1 096 | 5 390 | 6 111 | 54 999 |
SDB4 | 项集序列 | 69 | 2 520 | 178 | 1 403 |
SDB5 | 单项序列 | 668 | 231 | 35 100 | 35 100 |
SDB6 | 单项序列 | 1 663 | 6 417 | 57 852 | 57 852 |
算法 | SDB1 | SDB2 | SDB3 | SDB4 | SDB5 | SDB6 |
---|---|---|---|---|---|---|
TOUP-rf | 369 | 4 244 | 8 152 | 4 152 | 7 320 | 10 109 |
TOUP-nus | 1 206 | 114 990 | 2 268 510 | 480 672 | 70 438 | 1 263 717 |
TOUP-dfs | 600 | 53 045 | 63 818 | 2 135 126 | 69 631 | 57 427 |
HAOP-ms | 1 650 | 14 583 | 17 124 | 9 727 | 9 791 | 10 205 |
HANP-oms | 1 673 | 14 764 | 17 124 | 9 727 | 10 095 | 10 343 |
PMBC-ms | 369 | 4 244 | 8 152 | 4 152 | 7 320 | 10 109 |
TOUP | 369 | 4 244 | 8 152 | 4 152 | 7 320 | 10 109 |
表4 在6个数据集上不同算法生成候选模式数量对比
Tab. 4 Comparison of number of candidate patterns generated by different algorithms on six datasets
算法 | SDB1 | SDB2 | SDB3 | SDB4 | SDB5 | SDB6 |
---|---|---|---|---|---|---|
TOUP-rf | 369 | 4 244 | 8 152 | 4 152 | 7 320 | 10 109 |
TOUP-nus | 1 206 | 114 990 | 2 268 510 | 480 672 | 70 438 | 1 263 717 |
TOUP-dfs | 600 | 53 045 | 63 818 | 2 135 126 | 69 631 | 57 427 |
HAOP-ms | 1 650 | 14 583 | 17 124 | 9 727 | 9 791 | 10 205 |
HANP-oms | 1 673 | 14 764 | 17 124 | 9 727 | 10 095 | 10 343 |
PMBC-ms | 369 | 4 244 | 8 152 | 4 152 | 7 320 | 10 109 |
TOUP | 369 | 4 244 | 8 152 | 4 152 | 7 320 | 10 109 |
算法 | SDB1 | SDB2 | SDB3 | SDB4 | SDB5 | SDB6 |
---|---|---|---|---|---|---|
TOUP-rf | 123 | 224 | 339 | 14 | 804 | 1 825 |
TOUP-nus | 84 | 123 | 1 188 | 82 | 478 | 757 |
TOUP-dfs | 107 | 446 | 866 | 456 | 91 | 1 594 |
HAOP-ms | 591 | 995 | 699 | 138 | 1 343 | 2 174 |
HANP-oms | 628 | 1 022 | 710 | 14 | 1 383 | 2 213 |
PMBC-ms | 98 | 190 | 346 | 14 | 568 | 1 826 |
TOUP | 71 | 151 | 294 | 13 | 37 | 417 |
表5 在6个数据集上不同算法运行时间对比 (s)
Tab. 5 Comparison of running time amongdifferent algorithms on six datasets
算法 | SDB1 | SDB2 | SDB3 | SDB4 | SDB5 | SDB6 |
---|---|---|---|---|---|---|
TOUP-rf | 123 | 224 | 339 | 14 | 804 | 1 825 |
TOUP-nus | 84 | 123 | 1 188 | 82 | 478 | 757 |
TOUP-dfs | 107 | 446 | 866 | 456 | 91 | 1 594 |
HAOP-ms | 591 | 995 | 699 | 138 | 1 343 | 2 174 |
HANP-oms | 628 | 1 022 | 710 | 14 | 1 383 | 2 213 |
PMBC-ms | 98 | 190 | 346 | 14 | 568 | 1 826 |
TOUP | 71 | 151 | 294 | 13 | 37 | 417 |
算法 | SDB1 | SDB2 | SDB3 | SDB4 | SDB5 | SDB6 |
---|---|---|---|---|---|---|
TOUP-rf | 52 | 47 | 46 | 40 | 48 | 55 |
TOUP-nus | 54 | 50 | 50 | 41 | 47 | 54 |
TOUP-dfs | 54 | 50 | 49 | 40 | 47 | 52 |
HAOP-ms | 52 | 50 | 50 | 45 | 49 | 56 |
HANP-oms | 52 | 50 | 50 | 47 | 49 | 56 |
PMBC-ms | 52 | 47 | 49 | 44 | 48 | 55 |
TOUP | 52 | 47 | 46 | 40 | 47 | 52 |
表6 在6个数据集上不同算法内存消耗对比 (MB)
Tab. 6 Comparison of memory consumption amongdifferent algorithms on six datasets
算法 | SDB1 | SDB2 | SDB3 | SDB4 | SDB5 | SDB6 |
---|---|---|---|---|---|---|
TOUP-rf | 52 | 47 | 46 | 40 | 48 | 55 |
TOUP-nus | 54 | 50 | 50 | 41 | 47 | 54 |
TOUP-dfs | 54 | 50 | 49 | 40 | 47 | 52 |
HAOP-ms | 52 | 50 | 50 | 45 | 49 | 56 |
HANP-oms | 52 | 50 | 50 | 47 | 49 | 56 |
PMBC-ms | 52 | 47 | 49 | 44 | 48 | 55 |
TOUP | 52 | 47 | 46 | 40 | 47 | 52 |
算法 | SDB1_1 | SDB1_2 | SDB1_3 | SDB1_4 | SDB1_5 | SDB1_6 |
---|---|---|---|---|---|---|
TOUP-rf | 123 | 267 | 386 | 508 | 636 | 761 |
TOUP-nus | 84 | 217 | 325 | 410 | 530 | 620 |
TOUP-dfs | 107 | 237 | 373 | 522 | 673 | 777 |
HAOP-ms | 591 | 1 184 | 1 808 | 2 579 | 3 167 | 3 689 |
HANP-oms | 628 | 1 189 | 1 811 | 2 587 | 3 171 | 3 723 |
PMBC-ms | 98 | 199 | 302 | 409 | 510 | 611 |
TOUP | 71 | 161 | 242 | 323 | 401 | 484 |
表7 在SDB1_1~SDB1_6数据集上不同算法的运行时间对比 (s)
Tab. 7 Comparison of running time amongdifferent algorithms on SDB1_1-SDB1_6 datasets
算法 | SDB1_1 | SDB1_2 | SDB1_3 | SDB1_4 | SDB1_5 | SDB1_6 |
---|---|---|---|---|---|---|
TOUP-rf | 123 | 267 | 386 | 508 | 636 | 761 |
TOUP-nus | 84 | 217 | 325 | 410 | 530 | 620 |
TOUP-dfs | 107 | 237 | 373 | 522 | 673 | 777 |
HAOP-ms | 591 | 1 184 | 1 808 | 2 579 | 3 167 | 3 689 |
HANP-oms | 628 | 1 189 | 1 811 | 2 587 | 3 171 | 3 723 |
PMBC-ms | 98 | 199 | 302 | 409 | 510 | 611 |
TOUP | 71 | 161 | 242 | 323 | 401 | 484 |
算法 | SDB1_1 | SDB1_2 | SDB1_3 | SDB1_4 | SDB1_5 | SDB1_6 |
---|---|---|---|---|---|---|
TOUP-rf | 52 | 64 | 77 | 89 | 103 | 116 |
TOUP-nus | 54 | 68 | 84 | 102 | 121 | 136 |
TOUP-dfs | 54 | 67 | 83 | 97 | 115 | 132 |
HAOP-ms | 52 | 65 | 77 | 90 | 103 | 116 |
HANP-oms | 52 | 65 | 78 | 90 | 103 | 116 |
PMBC-ms | 52 | 64 | 77 | 90 | 103 | 116 |
TOUP | 52 | 64 | 77 | 90 | 103 | 116 |
表8 在SDB1_1~SDB1_6数据集上不同算法的内存消耗对比 (MB)
Tab. 8 Comparison of memory consumption amongdifferent algorithms on SDB1_1-SDB1_6 datasets
算法 | SDB1_1 | SDB1_2 | SDB1_3 | SDB1_4 | SDB1_5 | SDB1_6 |
---|---|---|---|---|---|---|
TOUP-rf | 52 | 64 | 77 | 89 | 103 | 116 |
TOUP-nus | 54 | 68 | 84 | 102 | 121 | 136 |
TOUP-dfs | 54 | 67 | 83 | 97 | 115 | 132 |
HAOP-ms | 52 | 65 | 77 | 90 | 103 | 116 |
HANP-oms | 52 | 65 | 78 | 90 | 103 | 116 |
PMBC-ms | 52 | 64 | 77 | 90 | 103 | 116 |
TOUP | 52 | 64 | 77 | 90 | 103 | 116 |
算法 | k=10 | k=12 | k=14 | k=16 | k=18 | k=20 |
---|---|---|---|---|---|---|
TOUP-rf | 369 | 391 | 485 | 758 | 942 | 956 |
TOUP-nus | 1 206 | 1 806 | 2 464 | 3 738 | 5 160 | 6 606 |
TOUP-dfs | 600 | 627 | 771 | 942 | 1 173 | 1 190 |
HAOP-ms | 1 650 | 2 130 | 4 381 | 5 294 | 6 754 | 7 287 |
HANP-oms | 1 673 | 2 186 | 4 512 | 5 515 | 6 892 | 7 621 |
PMBC-ms | 369 | 391 | 485 | 758 | 942 | 956 |
TOUP | 369 | 391 | 485 | 758 | 942 | 956 |
表9 不同参数k的生成候选模式数对比
Tab. 9 Comparison of number of generated candidate patterns with different parameter k
算法 | k=10 | k=12 | k=14 | k=16 | k=18 | k=20 |
---|---|---|---|---|---|---|
TOUP-rf | 369 | 391 | 485 | 758 | 942 | 956 |
TOUP-nus | 1 206 | 1 806 | 2 464 | 3 738 | 5 160 | 6 606 |
TOUP-dfs | 600 | 627 | 771 | 942 | 1 173 | 1 190 |
HAOP-ms | 1 650 | 2 130 | 4 381 | 5 294 | 6 754 | 7 287 |
HANP-oms | 1 673 | 2 186 | 4 512 | 5 515 | 6 892 | 7 621 |
PMBC-ms | 369 | 391 | 485 | 758 | 942 | 956 |
TOUP | 369 | 391 | 485 | 758 | 942 | 956 |
算法 | k=10 | k=12 | k=14 | k=16 | k=18 | k=20 |
---|---|---|---|---|---|---|
TOUP-rf | 123 | 146 | 169 | 255 | 318 | 321 |
TOUP-nus | 84 | 105 | 141 | 175 | 217 | 264 |
TOUP-dfs | 107 | 163 | 214 | 310 | 408 | 514 |
HAOP-ms | 591 | 716 | 1 465 | 1 794 | 2 211 | 2 343 |
HANP-oms | 628 | 775 | 1 549 | 1 893 | 2 353 | 2 521 |
PMBC-ms | 98 | 101 | 131 | 200 | 247 | 255 |
TOUP | 71 | 79 | 93 | 141 | 174 | 176 |
表10 不同参数k的运行时间对比 (s)
Tab. 10 Comparison of running time with different parameter k
算法 | k=10 | k=12 | k=14 | k=16 | k=18 | k=20 |
---|---|---|---|---|---|---|
TOUP-rf | 123 | 146 | 169 | 255 | 318 | 321 |
TOUP-nus | 84 | 105 | 141 | 175 | 217 | 264 |
TOUP-dfs | 107 | 163 | 214 | 310 | 408 | 514 |
HAOP-ms | 591 | 716 | 1 465 | 1 794 | 2 211 | 2 343 |
HANP-oms | 628 | 775 | 1 549 | 1 893 | 2 353 | 2 521 |
PMBC-ms | 98 | 101 | 131 | 200 | 247 | 255 |
TOUP | 71 | 79 | 93 | 141 | 174 | 176 |
1 | OKOLICA J S, PETERSON G L, MILLS R F, et al. Sequence pattern mining with variables[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(1): 177-187. 10.1109/tkde.2018.2881675 |
2 | GHOSH S, LI J, CAO L, et al. Septic shock prediction for ICU patients via coupled HMM walking on sequential contrast patterns[J]. Journal of Biomedical Informatics, 2017, 66: 19-31. 10.1016/j.jbi.2016.12.010 |
3 | LE B, M-T TRAN, VO B. Mining frequent closed inter-sequence patterns efficiently using dynamic bit vectors[J]. Applied Intelligence, 2015, 43: 74-84. 10.1007/s10489-014-0630-1 |
4 | CHEN X, XIAO R, DU X, et al. Constructing a novel Spark-based distributed maximum frequent sequence pattern mining for IoT log[C]// Proceedings of the 8th International Conference on Communication and Network Security. New York: ACM, 2018: 112-116. 10.1145/3290480.3290497 |
5 | 韩萌, 丁剑. 数据流频繁模式挖掘综述[J]. 计算机应用, 2019, 39(3): 719-727. 10.11772/j.issn.1001-9081.2018081712 |
HAN M, DING J. Survey of frequent pattern mining over data streams[J]. Journal of Computer Applications, 2019, 39(3): 719-727. 10.11772/j.issn.1001-9081.2018081712 | |
6 | WU Y, FAN J, LI Y, et al. NetDAP: (Δ, γ)-approximate pattern matching with length constraints[J]. Applied Intelligence, 2020, 50: 4094-4116. 10.1007/s10489-020-01778-1 |
7 | WU Y, TONG Y, ZHU X, et al. NOSEP: nonoverlapping sequence pattern mining with gap constraints[J]. IEEE Transactions on Cybernetics, 2018, 48(10): 2809-2822. 10.1109/tcyb.2017.2750691 |
8 | WANG Y WU Y, LI Y, et al. Self adaptive nonoverlapping sequential pattern mining[J]. Applied Intelligence, 2022, 52: 6646-6661. 10.1007/s10489-021-02763-y |
9 | WU Y, LUO L, LI Y, et al. NTP-Miner: nonoverlapping three-way sequential pattern mining[J]. ACM Transaction on Knowledge Discovery from Data, 2022, 16(3): No. 51. 10.1145/3480245 |
10 | 武优西, 刘茜, 闫文杰, 等. 无重叠条件严格模式匹配的高效求解算法[J]. 软件学报, 2021, 32(11): 3331-3350. 10.13328/j.cnki.jos.006054 |
WU Y X, LIU Q, YAN W J, et al. Efficient algorithm for solving strict pattern matching under nonoverlapping condition[J]. Journal of Software, 2021, 32(11): 3331-3350. 10.13328/j.cnki.jos.006054 | |
11 | FOURNIER-VIGER P, GAN W, WU Y, et al. Pattern mining: Current challenges and opportunities [C]// Proceedings of the 2022 International Conference on Database Systems for Advanced Applications. Cham: Springer, 2022: 34-49. 10.1007/978-3-031-11217-1_3 |
12 | WU Y, WANG X, LI Y, et al. OWSP-Miner: self-adaptive one-off weak-gap strong pattern mining[J]. ACM Transactions on Management Information Systems, 2022, 13(3): No. 25. 10.1145/3476247 |
13 | XU T, XU J, DONG X. Mining high utility sequential patterns using multiple minimum utility[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2018, 32(10): 1859017. 10.1142/s0218001418590176 |
14 | GAN W, LIN J C-W, FOURNIER-VIGER P, et al. A survey of utility-oriented pattern mining[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(4): 1306-1327. 10.1109/tkde.2019.2942594 |
15 | 单芝慧, 韩萌, 韩强. 动态数据上的高效用模式挖掘综述[J]. 计算机应用, 2022, 42(1): 94-108. 10.11772/j.issn.1001-9081.2021071290 |
SHAN Z H, HAN M, HAN Q. Survey of high utility pattern mining on dynamic data[J]. Journal of Computer Applications, 2022, 42(1): 94-108. 10.11772/j.issn.1001-9081.2021071290 | |
16 | SRIVASTAVA G, LIN J C-W, ZHANG X, et al. Large-scale high-utility sequential pattern analytics in Internet of Things[J]. IEEE Internet of Things Journal, 2021, 8(16): 12669-12678. 10.1109/jiot.2020.3026826 |
17 | SEGURA-DELGADO A, ANGUITA-RUIZ A, ALCALÁ R, et al. Mining high average-utility sequential rules to identify high-utility gene expression sequences in longitudinal human studies[J]. Expert Systems with Applications, 2022, 193: 116411. 10.1016/j.eswa.2021.116411 |
18 | WU Y, LEI R, LI Y, et al. HAOP-Miner: self-adaptive high-average utility one-off sequential pattern mining[J]. Expert Systems with Applications, 2021, 184: 115449. 10.1016/j.eswa.2021.115449 |
19 | WU Y, WANG Y, LI Y, et al. Top-k self-adaptive contrast sequential pattern mining[J]. IEEE Transactions on Cybernetics, 2022, 52(11):11819-11833. 10.1109/tcyb.2021.3082114 |
20 | ZHANG C, DU Z, GAN W, et al. TKUS: mining top-k high utility sequential patterns[J]. Information Sciences, 2021, 570: 342-359. 10.1016/j.ins.2021.04.035 |
21 | DONG X, QIU P, LÜ J, et al. Mining top-k useful negative sequential patterns via learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(9): 2764-2778. 10.1109/tnnls.2018.2886199 |
22 | LE T, VO B, V-N HUYNH, et al. Mining top-k frequent patterns from uncertain databases[J]. Applied Intelligence, 2020, 50: 1487-1497. 10.1007/s10489-019-01622-1 |
23 | LI C, YANG Q, WANG J. Efficient mining of gap-constrained subsequences and its various applications[J]. ACM Transactions on Knowledge Discovery from Data, 2012, 6(1): No. 2. 10.1145/2133360.2133362 |
24 | XIE F, WU X, ZHU X. Efficient sequential pattern mining with wildcards for keyphrase extraction[J]. Knowledge-Based Systems, 2017, 115: 27-39. 10.1016/j.knosys.2016.10.011 |
25 | LI Y, ZHANG S, GUO L, et al. NetNMSP: nonoverlapping maximal sequential pattern mining[J]. Applied Intelligence, 2022, 52: 9861-9884. 10.1007/s10489-021-02912-3 |
26 | 王珠林, 武优西, 王月华, 等. 具有周期间隙约束的负序列模式挖掘[J]. 计算机科学, 2023, 50(3): 147-154. 10.11896/jsjkx.211200248 |
WANG Z L, WU Y X, WANG Y H, et al. Mining negative sequential patterns with periodic gap constraints[J]. Computer Science, 2023, 50(3): 147-154. 10.11896/jsjkx.211200248 | |
27 | LIN J C-W, DJENOURI Y, SRIVASTAVA G, et al. Scalable mining of high-utility sequential patterns with three-tier MapReduce model[J]. ACM Transactions on Knowledge Discovery from Data, 2022, 16(3): 1-26. 10.1145/3487046 |
28 | GAN W S, LIN J C W, ZHANG J X, et al. Fast utility mining on sequence data[J]. IEEE Transactions on Cybernetics, 2021, 51(2): No. 60. 10.1109/tcyb.2020.2970176 |
29 | WU Y, GENG M, LI Y, et al. HANP-Miner: High average utility nonoverlapping sequential pattern mining[J]. Knowledge-Based Systems, 2021, 229: 107361. 10.1016/j.knosys.2021.107361 |
30 | KIM H, YUN U, BAEK Y, et al. Efficient list based mining of high average utility patterns with maximum average pruning strategies[J]. Information Sciences, 2021, 543: 85-105. 10.1016/j.ins.2020.07.043 |
31 | EZEIFE C I, ARAVINDAN V, CHATURVEDI R. Mining integrated sequential patterns from multiple databases[J]. International Journal of Data Warehousing and Mining, 2020, 16(1): 1-21. 10.4018/ijdwm.2020010101 |
32 | T-T PHAM, NGUYEN A DO T, et al. An efficient method for mining top-k closed sequential patterns[J]. IEEE Access, 2020, 8: 118156-118163. 10.1109/access.2020.3004528 |
33 | WU X, ZHU X, HE Y, et al. PMBC: Pattern mining from biological sequences with wildcard constraints[J]. Computers in Biology and Medicine, 2013, 43(5): 481-492. 10.1016/j.compbiomed.2013.02.006 |
[1] | 李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072. |
[2] | 董瑶, 付怡雪, 董永峰, 史进, 陈晨. 不完整多视图聚类综述[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1673-1682. |
[3] | 郑浩东, 马华, 谢颖超, 唐文胜. 融合遗忘因素与记忆门的图神经网络知识追踪模型[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2747-2752. |
[4] | 蒋华, 李星, 王慧娇, 韦静海. 基于数据索引结构的跨级高效用项集挖掘算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2200-2208. |
[5] | 黄硕, 李艳辉, 曹建秋. 本地化差分隐私下的频繁序列模式挖掘算法PrivSPM[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2057-2064. |
[6] | 祁超帅, 何文思, 焦毅, 马英红, 蔡伟, 任素萍. 无人机飞行数据异常检测算法综述[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1833-1841. |
[7] | 李元江, 权金升, 谭阳奕, 杨田. 基于相似和差异双视角的高维数据属性约简[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1467-1472. |
[8] | 邵小萌, 张猛. 融合注意力机制的时间卷积知识追踪模型[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 343-348. |
[9] | 李文全, 毛伊敏, 彭新东. 基于犹豫模糊集的凝聚式层次聚类算法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3755-3763. |
[10] | 孟玉飞, 武优西, 王珍, 李艳. 对比保序模式挖掘算法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3740-3746. |
[11] | 吴军, 欧阳艾嘉, 张琳. 基于影响度的统计显著序列模式挖掘算法[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2713-2721. |
[12] | 余顺坤, 闫泓序. 基于确定性因子的启发式属性值约简模型[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 469-474. |
[13] | 康军, 黄山, 段宗涛, 李宜修. 时空轨迹序列模式挖掘方法综述[J]. 《计算机应用》唯一官方网站, 2021, 41(8): 2379-2385. |
[14] | 孙蕊, 韩萌, 张春砚, 申明尧, 杜诗语. 含负项top-k高效用项集挖掘算法[J]. 计算机应用, 2021, 41(8): 2386-2395. |
[15] | 刘世泽, 秦艳君, 王晨星, 苏琳, 柯其学, 罗海勇, 孙艺, 王宝会. 基于深度残差长短记忆网络交通流量预测算法[J]. 计算机应用, 2021, 41(6): 1566-1572. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||