[1] 王安娜,陶子玉,姜茂发,等.基于PSO和BP网络的LF炉钢水温度智能预测[J].控制与决策,2006,21(7):814-816.(WANG A N, TAO Z Y, JIANG M F, et al. Intelligence temperature prediction of molten steel in LF based on PSO combined with BP neural network[J]. Control and Decision, 2006, 21(7):814-816.) [2] 赵晓东,徐生林,杨成忠.转炉炼钢多变量神经网络预报模型[J].化工学报,2010,61(8):2111-2115.(ZHAO X D, XU S L, YANG C Z. Multivariable neural network predictive model for BOF steel making[J]. Journal of Chemical Industry and Engineering (China), 2010, 61(8):2111-2115.) [3] 薄洪光,刘晓冰,马跃,等.基于粗糙集的钢铁行业工艺知识发现方法[J].计算机集成制造系统,2009,15(1):135-141.(BO H G, LIU X B, MA Y, et al. Rough set based process knowledge discovery approach in iron and steel industry[J]. Computer Integrated Manufacturing Systems, 2009, 15(1):135-141.) [4] 王心哲,韩敏.基于因果关系的CBR模型用于转炉炼钢静态控制[J].大连理工大学学报,2011,51(4):593-598.(WANG X Z, HAN M. Causality-based CBR model for static control of converter steelmaking[J]. Journal of Dalian University of Technology, 2011, 51(4):593-598.) [5] 袁平,王福利,毛志忠.基于案例推理的电弧炉终点预报[J].东北大学学报(自然科学版),2011,32(12):1673-1676.(YUAN P, WANG F L, MAO Z Z. CBR based endpoint prediction of EAF[J]. Journal of Northeastern University (Natural Science), 2011, 32(12):1673-1676.) [6] 黄金侠,金宁德.转炉冶炼终点静态控制预测模型[J].炼钢,2006,22(1):45-48.(HUANG J X, JIN N D. Static control predictive model for converter refining endpoint[J]. Steelmaking, 2006, 22(1):45-48.) [7] 付佳,陶百生,陈春雨,等.基于BP神经网络的转炉供氧模型研究[J].冶金自动化,2014,38(4):11-15.(FU J, TAO B S, CHEN C Y, et al. Research on oxygen model for BOF based on BP neural network[J]. Metallurgical Industry Automation, 2014, 38(4):11-15.) [8] 柴天佑,谢书明,杜斌,等.基于RBF神经网络的转炉炼钢终点预报[J].中国有色金属学报,1999,9(4):868-872.(CHAI T Y, XIE S M, DU B, et al. Endpoint prediction of basic oxygen furnace steelmaking based on RBF neural network[J]. The Chinese Journal of Nonferrous Metals, 1999, 9(4):68-872.) [9] 张辉宜,周奇龙,袁志祥,等.样本自选择回归分析算法在转炉炼钢中的应用[J].钢铁研究学报,2011,23(12):5-8.(ZHANG H Y, ZHOU Q L, YUAN Z X, et al. Application of the regression algorithm based on sample-self-selection in BOF steelmaking[J]. Journal of Iron and Steel Research, 2011, 23(12):5-8.) [10] HAN M, LIU C. Endpoint prediction model for basic oxygen furnace steel-making based on membrane algorithm evolving extreme learning machine[J]. Applied Soft Computing, 2014, 19(1):430-437. [11] 冯明霞,邹宗树,李强.应用改进的神经网络模型预报转炉冶炼终点[J].炼钢,2006,22(1):40-44.(FENG M X, ZOU Z S, LI Q. Heat endpoint prediction of combined blown converter by improved artificial neural network model[J]. Steelmaking, 2006, 22(1):40-44.) [12] CARUANA R. Multitask learning[J]. Machine Learning, 1997, 28(1):41-75. [13] ROCKAFELLAR R T. Monotone operators and the proximal point algorithm[J]. SIAM Journal on Control and Optimization, 1976, 14(5):877-898. [14] LUO Z Q, YU W. An introduction to convex optimization for communications and signal processing[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(8):1426-1438. |