[1] PEI L, GUINNESS R, CHEN R, et al. Human behavior cognition using smartphone sensors[J]. Sensors, 2013,13(2):1402-1424. [2] GUINNESS R E. Beyond where to how:a machine learning approach for sensing mobility contexts using smartphone sensors[J]. Sensors, 2015,15(5):9962-9985. [3] Activity Recognition. Google's activity recognition API[EB/OL].[2016-02-20]. http://developer.android.com/google/play-services/location.html. [4] FRANK K, NADALES V, JOSEFA M, et al. Reliable real-time recognition of motion related human activities using MEMS inertial sensors[EB/OL].[2016-06-20]. http://elib.dlr.de/64996/2/activityRecognition.pdf. [5] ELHOUSHI M, GEORGY J, WAHDAN A, et al. Using portable device sensors to recognize height changing modes of motion[C]//Proceedings of the 2014 IEEE International Instrumentation and Measurement Technology Conference. Piscataway, NJ:IEEE, 2014:477-481. [6] ELHOUSHI M. Advanced motion mode recognition for portable navigation[EB/OL].[2016-06-20].https://www.researchgate.net/profile/Mostafa_Elhoushi/publication/309619569_Advanced_Motion_Mode_Recognition_for_Portable_Navigation/links/581a541808aed2439386b63f/Advanced-Motion-Mode-Recognition-for-Portable-Navigation.pdf. [7] ELHOUSHI M, GEORGY J, KORENBERG M, et al. Robust motion mode recognition for portable navigation independent on device usage[C]//Proceedings of the 2014 IEEE/ION Position, Location and Navigation Symposium. Piscataway, NJ:IEEE, 2014:158-163. [8] VANINI S, GIORDANO S. Adaptive context-agnostic floor transition detection on smart mobile devices[C]//Proceedings of the 2013 IEEE International Conference on Pervasive Computing and Communications Workshops. Piscataway, NJ:IEEE, 2013:2-7. [9] SANKARAN K, ZHU M, GUO X F, et al. Using mobile phone barometer for low-power transportation context detection[C]//Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems. New York:ACM, 2014:191-205. [10] WU M, PATHAK P H, MOHAPATRA P. Monitoring building door events using barometer sensor in smartphones[C]//Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York:ACM, 2015:319-323. [11] SHI S, SIGG S, JI Y. Activity recognition from radio frequency data:multi-stage recognition and features[C]//Proceedings of the 2012 IEEE Vehicular Technology Conference. Piscataway, NJ:IEEE, 2012:1-6. [12] ABDELNASSER H, HARRAS K A, YOUSSEF M. Ubibreathe:a ubiquitous non-invasive WiFi-based breathing estimator[C]//Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York:ACM, 2015:277-286. [13] PU Q, GUPTA S, GOLLAKOTA S, et al. Whole-home gesture recognition using wireless signals[C]//Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM. New York:ACM, 2013:485-486. [14] 蔡晓东,杨超,王丽娟,等. 验证和识别相融合的深度行人识别网络[J].计算机应用, 2016, 36(9):2550-2554.(CAI X D, YANG C, WANF L J, et al. Deep network for person identification based on joint identification-verification[J]. Journal of Computer Applications, 2016, 36(9):2550-2554.) [15] CHEN X, EDELSTEIN A, LI Y, et al. Sequential Monte Carlo for simultaneous passive device-free tracking and sensor localization using received signal strength measurements[C]//Proceedings of the 201110th International Conference on Information Processing in Sensor Networks. Piscataway, NJ:IEEE, 2011:342-353. [16] ABDELNASSER H, YOUSSEF M, HARRAS K A. Wigest:a ubiquitous WiFi-based gesture recognition system[C]//Proceedings of the 2015 IEEE Conference on Computer Communications. Piscataway, NJ:IEEE, 2015:1472-1480. [17] ORANGE[EB/OL].[2016-06-20].http://www.ailab.si/orange/. |