[1] 国务院. 国家突发公共事件总体应急预案[J]. 中国中医基础医学杂志, 2006, 12(1):77-79.(State Council. National emergency response plan for public emergencies [J]. Chinese Journal of Basic Medicine in Traditional Chinese Medicine,2006, 12(1):77-79.) [2] 孙越恒, 王文俊, 迟晓彤, 等. 基于多维时间序列模型的社会安全事件关联关系挖掘与预测[J]. 天津大学学报 (社会科学版), 2016, 18(2): 97-102. (SUN Y H, WANG W J, CHI X T, et al. Correlation mining and prediction of social security events based on multi-dimensional time series model[J]. Journal of Tianjin University (Social Sciences), 2016, 18(2): 97-102.) [3] BACKER D A, BHAVNANI R, HUTH P K. Peace and Conflict 2016[M]. Oxford: Routledge, 2016: 67. [4] KLUCH S P, VAUX A. The non-random nature of terrorism: an exploration of where and how global trends of terrorism have developed over 40 years[J]. Studies in Conflict & Terrorism, 2016, 39(12): 1031-1049. [5] SIVARAMAN R, SRINIVASAN S, CHANDRASEKERAN R M. Big data on terrorist attacks: an analysis using the ensemble classifier approach[EB/OL]. [2017-01-10]. http://edlib.net/2015/icidret/icidret2015042.pdf. [6] 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年: 回顾与展望[J]. 计算机学报, 2016, 39(8): 1697-1716. (JIAO L C, YANG S Y, LIU F, et al. Seventy years beyond neural networks: retrospect and prospect [J]. Chinese Journal of Computers, 2016, 39(8): 1697-1716.) [7] 刘畅. BP神经网络的权值快速计算法及其逼近性能分析[J]. 科技视界, 2016(11): 130-131. (LIU C. Fuzzy calculation method and approximation performance analysis of BP neural network [J]. Science & Technology View, 2016(11): 130-131.) [8] SALEHIAN S, YAN Y. Comparison of spark resource managers and distributed file systems[C]//Proceedings of the 2016 IEEE International Conferences on Big Data and Cloud Computing, Social Computing and Networking, Sustainable Computing and Communications. Piscataway, NJ: IEEE, 2016: 567-572. [9] LIU T, FANG Z, ZHAO C, et al. Parallelization of a series of extreme learning machine algorithms based on spark[C]//Proceedings of the 2016 IEEE/ACIS 15th International Conference on Computer and Information Science. Piscataway, NJ: IEEE, 2016: 1-5. [10] FREILICH J D, LAFREE G. Measurement issues in the study of terrorism: introducing the special issue[J]. Studies in Conflict and Terrorism, 2016, 39(7/8): 569-579. [11] MEIERRIEKS D, SCHNEIDER F. The short-and long-run relationship between the illicit drug business and terrorism[J]. Applied Economics Letters, 2016, 23(18): 1274-1277. [12] LUTZ B J, LUTZ J M. Globalization, terrorism, and the economy[M]//LUTZ B J, LUTZ J M. Globalization and the Economic Consequences of Terrorism. Berlin: Springer, 2017: 1-30. [13] SAKHARE N N, JOSHI S A. Classification of criminal data using J48-decision tree algorithm[J]. IFRSA International Journal of Data Warehousing & Mining, 2014, 4(3): 167-171. [14] SAKHARE N, JOSHI S. Criminal identification system based on data mining[C]//Proceedings of the 3rd International Conference on Recent Trends in Engineering and Technology. Chandwad, Nashik, India: [s.n.], 2014. [15] JOSHI S, SAKHARE N. History bits based novel algorithm for classification of structured data[C]//Proceedings of the 2015 IEEE International Advance Computing Conference. Piscataway, NJ: IEEE, 2015: 609-612. [16] SHEIKH H R. Use of predictive modeling for prediction of future terrorist attacks in Pakistan[EB/OL]. [2017-01-10]. http://koha.isra.edu.pk: 8080/jspui/handle/123456789/59. [17] WU S, LIU Q, BAI P, et al. SAPE: a system for situation-aware public security evaluation[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2016: 4401-4402. [18] STRANG K D, SUN Z. Analyzing relationships in terrorism big data using Hadoop and statistics[J]. Journal of Computer Information Systems, 2017, 57(1): 67-75. [19] DEAN J, GHEMAWAT S. MapReduce: simplified data processing on large clusters[J]. Communications of the ACM, 2008, 51(1): 107-113. [20] LÄMMEL R. Google's MapReduce programming model-revisited[J]. Science of Computer Programming, 2008, 70(1): 1-30. [21] ZAHARIA M, CHOWDHURY M, FRANKLIN M J, et al. Spark: cluster computing with working sets[C]//HotCloud 2010: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing. Berkeley: USENIX Association, 2010: 10. [22] ZAHARIA M, CHOWDHURY M, DAS T, et al. Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing[C]//Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation. Berkeley: USENIX Association, 2012: 2. [23] MENG X, BRADLEY J, YUVAZ B, et al. MLlib: machine learning in Apache Spark[J]. The Journal of Machine Learning Research, 2016, 17(1): 1235-1241. |