[1] KELLERER H, PFERSCHY U, PISINGER D. Knapsack Problems[M]. Berlin:Springer, 2004:55-75. [2] WILBAUT C, SALHI S, HANAFI S. An iterative variable-based fixation heuristic for the 0-1 multidimensional knapsack problem[J]. European Journal of Operational Research, 2009, 199(2):339-348. [3] CHU P C, BEASLEY J E. A genetic algorithm for the multidimensional knapsack problem[J]. Journal of Heuristics, 1998, 4(1):63-86. [4] DJANNATY F, DOOSTDAR S. A hybrid genetic algorithm for the multidimensional knapsack problem[J]. International Journal of Contemporary Mathematical Sciences, 2008, 3(9/10/11/12):443-456. [5] SBIHI A. A best first search exact algorithm for the multiple-choice multidimensional knapsack problem[J]. Journal of Combinatorial Optimization, 2006, 13(4):337-351. [6] FURINI F, LORI M, MARTELLO S, et al. Heuristic and exact algorithms for the interval min-max regret knapsack problem[J]. INFORMS Journal on Computing, 2015, 27(2):392-405. [7] GULDAN B. Heuristic and exact algorithms for discounted knapsack problems[D]. Erlangen:University of Erlangen-Nürnberg, 2007:1-78. [8] RONG A Y, FIGUEIRA J R, KLAMROTH K. Dynamic programming based algorithms for the discounted {0-1} knapsack problem[J]. Applied Mathematics and Computation, 2012, 218(12):6921-6933. [9] 贺毅朝,王熙照,李文斌,等.基于遗传算法求解折扣{0-1}背包问题的研究[J].计算机学报,2016,39(12):2614-2630.(HE Y C, WANG X Z, LI W B, et al. Research on genetic algorithms for the discounted {0-1} knapsack problem[J]. Chinese Journal of Computers, 2016, 39(12):2614-2630.) [10] 刘雪静,贺毅朝,吴聪聪,等.基于细菌觅食算法求解折扣{0-1}背包问题的研究[J/OL].计算机工程与应用,2017:1-11. (2017-02-16)[2017-08-18]. http://kns.cnki.net/kcms/detail/11.2127.TP.20170216.1044.038.html.(LIU X J, HE Y C, WU C C, et al. Research on bacterial foraging optimization algorithm for the Discounted {0-1} knapsack problem[J/OL]. Computer Engineering and Applications, 2017:1-11. (2017-02-16)[2017-08-18]. http://kns.cnki.net/kcms/detail/11.2127.TP.20170216.1044.038.html.) [11] 吴聪聪,贺毅朝,陈嶷瑛,等.变异蝙蝠算法求解折扣{0-1}背包问题[J].计算机应用,2017,37(5):1292-1299.(WU C C, HE Y C, CHEN Y Y, et al. Mutated bat algorithm for solving the discounted{0-1}KP[J]. Journal of Computer Applications, 2017, 37(5):1292-1299.) [12] ASKARZADEH A. A novel metaheuristic method for solving constrained engineering optimization problems:crow search algorithm[J]. Computers & Structures, 2016, 169:1-12. [13] ABDELAZIZ A Y, FATHY A. A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks[J]. Engineering Science & Technology:An International Journal, 2017, 20(2):391-402. [14] SHEN L, XU L, WEI R, et al. Multi-swarm optimization with chaotic mapping for dynamic optimization problems[C]//Proceedings of the 2016 International Symposium on Computational Intelligence and Design. Piscataway, NJ:IEEE, 2016:132-137. [15] 贺毅朝,王熙照,寇应展.一种具有混合编码的二进制差分演化算法[J].计算机研究与发展,2007,44(9):1476-1484.(HE Y C, WANG X Z, KOU Y Z. A binary differential evolution algorithm with hybrid encoding[J]. Journal of Computer Research and Development, 2007, 44(9):1467-1484.) [16] NOMAN N, IBA H. Enhancing differential evolution performance with local search for high dimensional function optimization[C]//GECCO 2005:Proceedings of the 2005 Conference on Genetic and Evolutionary Computation. New York:ACM, 2005:967-974. [17] MICHALEWICZ Z, JANIKOW C Z, KRAWCZYK J B. A modified genetic algorithm for optimal control problems[J]. Computers & Mathematics with Applications, 1992, 23(12):83-94. |