[1] 彭京,杨冬青,唐世渭,等.一种基于语义内积空间模型的文本聚类算法[J].计算机学报,2007,30(8):1354-1363.(PENG J, YANG D Q, TANG S W, et al. A novel text clustering algorithm based on inner product space model of semantic[J]. Chinese Journal of Computers, 2007, 30(8):1354-1363.) [2] MAHDAVI M, ABOLHASSANI H. Harmony K-means algorithm for document clustering[J]. Data Mining & Knowledge Discovery, 2009, 18(3):370-391. [3] 王永贵,林琳,刘宪国.结合双粒子群和K-means的混合文本聚类算法[J].计算机应用研究,2014,31(2):364-368.(WANG Y G, LIN L, LIU X G. Hybrid text clustering algorithm based on dual particle swarm optimization and K-means algorithm[J]. Application Research of Computers, 2014, 31(2):364-368.) [4] 樊宁.K均值聚类算法在银行客户细分中的研究[J].计算机仿真,2011,28(3):369-372.(FAN N. Simulation study on commercial bank customer segmentation on K-means clustering algorithm[J]. Computer Simulation, 2011, 28(3):369-372.) [5] 高曼,韩勇,陈戈,等.基于K-means聚类算法的公交行程速度计算模型[J].计算机科学,2016,43(S1):422-424.(GAO M, HAN Y, CHEN G, et al. Computational model of average travel speed based on K-means algorithms[J]. Computer Science, 2016, 43(S1):422-424.) [6] LOUHICHI S, GZARA M, ABDALLAH H B. A density based algorithm for discovering clusters with varied density[C]//Proceedings of the 2014 World Congress on Computer Applications and Information Systems. Piscataway, NJ:IEEE, 2014:1-6. [7] YEDLA M, PATHAKOTA S R, SRINIVASA T M. Enhancing K-means clustering algorithm with improved initial center[J]. International Journal of Computer Science & Information Technologies, 2010, 1(2):121-125. [8] 程艳云,周鹏.动态分配聚类中心的改进K均值聚类算法[J].计算机技术与发展,2017,27(2):33-36.(CHENG Y Y, ZHOU P. Improved K-means clustering algorithm for dynamic allocation cluster center[J]. Computer Technology and Development, 2017, 27(2):33-36.) [9] 于海涛,李梓,姚念民.K-means聚类算法优化方法的研究[J].小型微型计算机系统,2012,33(10):2273-2277.(YU H T, LI Z, YAO N M. Research on optimization method for K-means clustering algorithm[J]. Journal of Chinese Computer Systems, 2012, 33(10):2273-2277.) [10] 黄韬,刘胜辉,谭艳娜.基于K-means聚类算法的研究[J].计算机技术与发展,2011,21(7):54-57.(HUANG T, LIU S H, TAN Y N. Research of clustering algorithm based on K-means[J]. Computer Technology and Development, 2011, 21(7):54-57.) [11] 翟东海,鱼江,高飞,等.最大距离法选取初始簇中心的K-means文本聚类算法的研究[J].计算机应用研究,2014,31(3):713-715.(ZHAI D H, YU J, GAO F, et al. K-means text clustering algorithm based on initial cluster centers selection according to maximum distance[J]. Application Research of Computers, 2014, 31(3):713-715.) [12] 周爱武,于亚飞.K-means聚类算法的研究[J].计算机技术与发展,2011,21(2):62-65.(ZHOU AW, YU Y F. The Research about clustering algorithm of K-means[J]. Computer Technology and Development, 2011, 21(2):62-65.) [13] 王春龙,张敬旭.基于LDA的改进K-means算法在文本聚类中的应用[J].计算机应用,2014,34(1):249-254.(WANG C L, ZHANG J X. Improved K-means algorithm based on latent Dirichlet allocation for text clustering[J]. Journal of Computer Applications, 2014, 34(1):249-254.) [14] 安计勇,高贵阁,史志强,等.一种改进的K均值文本聚类算法[J].传感器与微系统,2015,34(5):130-133.(AN J Y, GAO G G, SHI Z Q, et al. An improved K-means text clustering algorithm[J]. Transducer and Microsystem Technologies, 2015, 34(5):130-133.) [15] 李武,赵娇燕,严太山.基于平均差异度优选初始聚类中心的改进K-均值聚类算法[J].控制与决策,2017,32(4):759-762.(LIU W, ZHAO J Y, YAN T S. Improved K-means clustering algorithm optimizing initial clustering centers based on average difference degree[J]. Control and Decision, 2017, 32(4):759-762.) [16] 张素洁,赵怀慈.最优聚类个数和初始聚类中心点选取算法研究[J].计算机应用研究,2017,34(6):1-5.(ZHANG S J, ZHAO H C. Algorithm research of optimal cluster number and initial cluster center[J]. Application Research of Computers, 2017, 34(6):1-5.) [17] SALTON G, WONG A, YANG C S. A vector space model for automatic indexing[J]. Communications of the ACM, 1975, 18(11):613-620. [18] 王永贵,林琳,刘宪国.基于改进粒子群优化的文本聚类算法研究[J].计算机工程,2014,40(11):172-177.(WANG Y G, LIN L, LIU X G. Research on text clustering algorithm based on improved particle swarm optimization[J]. Computer Engineering, 2014, 40(11):172-177.) [19] SALTON G, BUCKLEY C. Term-weighting approaches in automatic text retrieval[J]. Information Processing & Management, 1988, 24(5):513-523. [20] 黄承慧,印鉴,侯昉.一种结合词项语义信息和TF-IDF方法的文本相似度量方法[J].计算机学报,2011,34(5):856-864.(HUANG C H, YIN J, HOU F. A text similarity measurement combining word semantic information with TF-IDF method[J]. Chinese Journal of Computers, 2011, 34(5):856-864.) |