[1] 唐宋, 陈利娟, 陈志贤, 等. 基于目标域局部近邻几何信息的域自适应图像分类方法[J]. 计算机应用, 2017, 37(4):1164-1168.(TANG S, CHEN L J, CHEN Z X, et al. Domain adaptation image classification based on target local-neighbor geometrical information[J]. Journal of Computer Applications, 2017, 37(4):1164-1168.) [2] XIONG H, YU W, YANG X, et al. Learning the conformal transformation kernel for image recognition[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(1):149-163. [3] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015:1-9. [4] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet:a unified embedding for face recognition and clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015:815-823. [5] TOMPSON J, GOROSHIN R, JAIN A, et al. Efficient object localization using convolutional networks[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015:648-656. [6] ZHANG J, HAN Y, TANG J, et al. Semi-supervised image-to-video adaptation for video action recognition[J]. IEEE Transactions on Cybernetics, 2016, 47(4):960-973. [7] LIU L, SHAO L, LI X, et al. Learning spatio-temporal representations for action recognition:a genetic programming approach[J]. IEEE Transactions on Cybernetics, 2016, 46(1):158-170. [8] HUSAIN F, DELLEN B, TORRAS C. Action recognition based on efficient deep feature learning in the spatio-temporal domain[J]. IEEE Robotics and Automation Letters, 2016, 1(2):984-991. [9] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[EB/OL].[2017-05-06]. http://www.datascienceassn.org/sites/default/files/Two-Stream%20Convolutional%20Networks%20for%20Action%20Recognition%20in%20Videos.pdf. [10] JI S, YANG M, YU K, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):221-231. [11] KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks[C]//CVPR'14:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2014:1725-1732. [12] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]//ICCV'15:Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2015:4489-4497. [13] DONAHUE J, JIA Y, VINYALS O, et al. DeCAF:a deep convolutional activetion feature for generic visual recognition[EB/OL].[2017-05-09]. https://people.eecs.berkeley.edu/~nzhang/papers/icml14_decaf.pdf. [14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[EB/OL].[2017-05-07]. http://xanadu.cs.sjsu.edu/~drtylin/classes/cs267_old/ImageNet%20DNN%20NIPS2012(2).pdf. [15] KUEHNE H, JHUANG H, GARROTE E, et al. HMDB:a large video database for human motion recognition[C]//ICCV'11:Proceedings of the 2011 International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2011:2556-2563. [16] DONAHUE J, HENDRICKS L A, GUADARRAMA S, et al. Long-term recurrent convolutional networks for visual recognition and description[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015:2625-2634. [17] SUN L, JIA K, YEUNG D Y, et al. Human action recognition using factorized spatio-temporal convolutional networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2015:4597-4605. [18] NAHA S, WANG Y. Beyond verbs:understanding actions in videos with text[C]//Proceedings of the 201623rd International Conference on Pattern Recognition. Piscataway, NJ:IEEE, 2016:1833-1838. [19] HU R, XU H, ROHRBACH M, et al. Natural language object retrieval[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:4555-4564. |