[1] SUN W, RUMSHISKY A, UZUNER O. Temporal reasoning over clinical text:the state of the art[J]. Journal of the American Medical Informatics Association, 2013, 20(5):814-819. [2] SUN W, RUMSHISKY A, UZUNER O. Evaluating temporal relations in clinical text:2012 i2b2 Challenge[J]. Journal of the American Medical Informatics Association, 2013, 20(5):806-813. [3] 王昀,苑春法.基于转换的时间-事件关系映射[J].中文信息学报,2004,18(4):24-31.(WANG Y, YUAN C F. A time-event mapping method based transformation[J]. Journal of Chinese Information Processing, 2004, 18(4):24-31.) [4] 林静,苑春法.汉语时间关系抽取与计算[J].中文信息学报,2009,23(5):62-67.(LIN J, YUAN C F. Extraction and computation of Chinese temporal relation[J]. Journal of Chinese Information Processing, 2009, 23(5):62-67.) [5] 王风娥,谭红叶,钱揖丽.基于最大熵的句内时间关系识别[J].计算机工程,2012,38(4):37-39.(WANG F E, TAN H Y, QIAN Y L. Recognition of temporal relation in one sentence based on maximum entropy[J]. Computer Engineering, 2012, 38(4):37-39.) [6] 刘莉.中文时间事件关系识别的方法研究[D].重庆:重庆大学,2012:33-35.(LIU L. Research on automatic identification of temporal relations between Chinese time expressions and events[D]. Chongqing:Chongqing University, 2012:33-35.) [7] D'SOUZA J, NG V. Classifying temporal relations in clinical data:a hybrid, knowledge-rich approach[J]. Journal of Biomedical Informatics, 2013, 46:S29-S39. [8] NIKFARJAM A, EMADZADEH E, GONZALEZ G. Towards generating a patient's timeline:extracting temporal relationships from clinical notes[J]. Journal of Biomedical Informatics, 2013, 46:S40-S47. [9] CHENG Y, ANICK P, HONG P, et al. Temporal relation discovery between events and temporal expressions identified in clinical narrative[J]. Journal of Biomedical Informatics, 2013, 46:S48-S53. [10] DO H W, JEONG Y S. Temporal relation classification with deep neural network[C]//Proceedings of the 2016 International Conference on Big Data and Smart Computing. Washington, DC:IEEE Computer Society, 2016:454-457. [11] CHENG F, MIYAO Y. Classifying temporal relations by bidirectional LSTM over dependency paths[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Short Papers). Stroudsburg, PA:Association for Computational Linguistics, 2017, 2:1-6. [12] DLIGACH D, MILLER T, CHEN L, et al. Neural temporal relation extraction[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2017,2:746-751. [13] XU D, ZHANG M, ZHAO T, et al. Data-driven information extraction from Chinese electronic medical records[J]. PLOS ONE, 2015, 10(8):e0136270. [14] HANKCS. HanLP[EB/OL].[2014-12-23]. https://github.com/hankcs/HanLP. [15] STOLCKE A. An efficient probabilistic context-free parsing algorithm that computes prefix probabilities[J]. Computational Linguistics, 1994, 21(2):165-201. [16] DAN K, MANNING C D. Fast exact inference with a factored model for natural language parsing[EB/OL].[2017-03-03]. http://www.ling.helsinki.fi/kit/2008s/clt350/docs/KleinManning-lexpar03.pdf. [17] HOLMES G, DONKIN A, WITTEN I H. WEKA:a machine learning workbench[EB/OL].[2017-03-03]. https://researchcommons.waikato.ac.nz/bitstream/handle/10289/1138/uow-cs-wp-1994-09.pdf;jsessionid=0E603B1F904CF7546CF087199832DD44?sequence=1. |