[1] RICCI F, ROKACH L, SHAPIRA B. Recommender systems:introduction and challenges[M]//RICCI F, ROKACH L, SHAPIRA B. Recommender Systems Handbook. Berlin:Springer, 2015:1-34. [2] BOBADILLA J, ORTEGA F, HERNANDO A, et al. Recommender systems survey[J]. Knowledge-Based Systems, 2013, 46:109-132. [3] JEONG B, LEE J, CHO H. Improving memory-based collaborative filtering via similarity updating and prediction modulation[J]. Information Sciences, 2010, 180(5):602-612. [4] ZHANG H R, MIN F, WANG S S. A random forest approach to model-based recommendation[J]. Journal of Information and Computational Science, 2014, 11(15):5341-5348. [5] Lü L, MEDO M, CHI H Y, et al. Recommender systems[J]. Physics Reports, 2012, 519(1):1-49. [6] PIRASTEH P, JUNG J J, HWANG D. Item-based collaborative filtering with attribute correlation:a case study on movie recommendation[C]//ACⅡDS 2014:Proceedings of the 6th Asian Conference on Intelligent Information and Database Systems. Berlin:Springer, 2014:245-252. [7] BASU A, VAIDYA J, KIKUCHI H. Perturbation based privacy preserving slope one predictors for collaborative filtering[C]//IFIPTM 2012:Proceedings of the 6th IFIP WG 11.11 International Conference on Trust Management VI. Berlin:Springer, 2017, 374:17-35. [8] KIM H N, JI A T, HA I, et al. Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation[J]. Electronic Commerce Research and Applications, 2010, 9(1):73-83. [9] PITSILIS G, WANG W. Harnessing the power of social bookmarking for improving tag-based recommendations[J]. Computers in Human Behavior, 2015, 50:239-251. [10] CAWLEY G C. Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs[C]//IJCNN 2006:Proceedings of the 2006 International Joint Conference on Neural Networks. Piscataway, NJ:IEEE, 2006:1661-1668. [11] ZHENG M, MIN F, ZHANG H R, et al. Fast recommendations with the M-distance[J]. IEEE Access, 2016, 4:1464-1468. [12] 李淋淋,倪建成,于苹苹, 等. 基于聚类和Spark框架的加权Slope One算法[J]. 计算机应用, 2017, 37(5):1287-1291, 1310.(LI L L, NI J C, YU P P, et al. Weighted Slope One algorithm based on clustering and Spark framework[J]. Journal of Computer Applications, 2017, 37(5):1287-1291, 1310.) [13] TIAN S, OU L. An improved slope one algorithm combining KNN method weighted by user similarity[C]//WAIM 2016:Proceedings of the 2016 International Conference on Web-Age Information Management. Berlin:Springer, 2016:88-98. [14] 李镇君, 周竹荣. 基于Document Triage的TF-IDF算法的改进[J]. 计算机应用, 2015, 35(12):3506-3510, 3514.(LI Z J, ZHOU Z R. Improvement of term frequency-inverse document frequency algorithm based on Document Triage[J]. Journal of Computer Applications, 2015, 35(12):3506-3510, 3514.) [15] ANIDORIFON L, SANTOSGAGO J, CAEIRORODRIGUEZ M, et al. Recommender systems[J]. Communications of the ACM, 2015, 40(3):56-58. [16] CREMONESI P, GARZOTTO F, NEGRO S, et al. Looking for "Good" recommendations:a comparative evaluation of recommender systems[C]//INTERACT 2011:Proceedings of the 13th IFIP TC 13 International Conference on Human-Computer Interaction, LNCS 6948. Berlin:Springer, 2017:152-168. |