[1] ROBIE K. Falls in older people:risk factors and strategies for prevention[J]. The Journal of the American Medical Association, 2010, 304(17):1958-1959. [2] 沈秉乾,武志勇, 贺前华, 等. 人体姿势状态判决的跌倒检测方法[J]. 计算机应用, 2014, 34(增刊1):223-227, 264.(SHEN B Q, WU Z Y, HE Q H, et al. Falling detection method based on human body posture judgment[J]. Journal of Computer Applications, 2014, 34(S1):223-227, 264.) [3] 罗丹, 罗海勇. 基于随机森林的跌倒检测算法[J]. 计算机应用, 2015, 35(11):3157-3160, 3165.(LUO D, LUO H Y. Fall detection algorithm based on random forest[J]. Journal of Computer Applications, 2015, 35(11):3157-3160, 3165.) [4] YU X. Approaches and principles of fall detection for elderly and patient[C]//HealthCom 2008:Proceedings of the 10th International Conference on E-health Networking, Applications and Services. Piscataway, NJ:IEEE, 2008:42-47. [5] HU F, HAO Q, SUN Q, et al. Cyber physical system with virtual reality for intelligent motion recognition and training[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(2):347-363. [6] AUVINET E, MULTON F, SAINT-ARNAUD A, et al. Fall detection with multiple cameras:an occlusion-resistant method based on 3-D silhouette vertical distribution[J]. IEEE Transactions on Information Technology in Biomedicine, 2011, 15(2):290-300. [7] TOREYIN B U, SOYER E B, ONARAN I, et al. Falling person detection using multi-sensor signal processing[J]. EURASIP Journal on Advances in Signal Processing, 2008, 2008:Article No. 29. [8] ZHUANG X, HUANG J, POTAMIANOS G, et al. Acoustic fall detection using Gaussian mixture models and GMM supervectors[C]//ICASSP 2009:Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ:IEEE, 2009:69-72. [9] GJORESKI H, KOZINA S, GAMS M, et al. RAReFall-real-time activity recognition and fall detection system[C]//Proceedings of the 2014 IEEE International Conference on Pervasive Computing and Communications Workshops. Piscataway, NJ:IEEE, 2014:145-147. [10] RAKHECHA S, HSU K. Reliable and secure body fall detection algorithm in a wireless mesh network[C]//BodyNets 2013:Proceedings of the 8th International Conference on Body Area Networks. Brussels, Belgium:ICST, 2013:420-426. [11] CHEN Z, CHEN Y, HU L, et al. Leveraging two-stage weighted ELM for multimodal wearables based fall detection[C]//Proceedings of ELM-2014. Berlin:Springer, 2015, 2:161-168. [12] QU W, LIN F, WANG A, et al. Evaluation of a low-complexity fall detection algorithm on wearable sensor towards falls and fall-alike activities[C]//Proceedings of the 2015 IEEE Signal Processing in Medicine and Biology Symposium. Piscataway, NJ:IEEE, 2015:1-6. [13] WANNENBURG J, MALEKIAN R. Physical activity recognition from smartphone accelerometer data for user context awareness sensing[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 47(12):3142-3149. [14] HU L, CHEN Y, WANG S, et al. Less annotation on personalized activity recognition using context data[C]//Proceedings of the 2016 International IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress. Piscataway, NJ:IEEE, 2016:327-332. [15] HU L, CHEN Y, WANG S, et al. b-COELM:a fast, lightweight and accurate activity recognition model for mini-wearable devices[J]. Pervasive and Mobile Computing, 2014, 15:200-214. [16] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006, 70(1):489-501. [17] HUANG G B, ZHU Q Y, SIEW C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Transactions on Neural Networks, 2006, 17(4):879-892. [18] HUANG G B, ZHOU H, DING X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(2):513-529. [19] SCARDAPANE S, COMMINIELLO D, SCARPINITI M, et al. Online sequential extreme learning machine with kernels[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9):2214-2220. [20] LIANG N Y, HUANG G B, SARATCHANDRAN P, et al. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Transactions on Neural networks, 2006, 17(6):1411-1423. [21] GU Y, LIU J, CHEN Y, et al. Constraint online sequential extreme learning machine for lifelong indoor localization system[C]//Proceedings of the 2014 International Joint Conference on Neural Networks. Piscataway, NJ:IEEE, 2014:732-738. [22] GUO L, HAO J H, LIU M. An incremental extreme learning machine for online sequential learning problems[J]. Neurocomputing, 2014, 128:50-58. [23] GAO X, HOI S, ZHANG Y, et al. Sparse online learning of image similarity[J]. ACM Transactions on Intelligent Systems and Technology, 2017, 8(5):Article No. 64. [24] GAO X, CHEN Z, TANG S, et al. Adaptive weighted imbalance learning with application to abnormal activity recognition[J]. Neurocomputing, 2016, 173:1927-1935. [25] JIANG X, LIU J, CHEN Y, et al. Feature adaptive online sequential extreme learning machine for lifelong indoor localization[J]. Neural Computing and Applications, 2016, 27(1):215-225. [26] CHEN Z, CHEN Y, GAO X, et al. Unobtrusive sensing incremental social contexts using fuzzy class incremental learning[C]//Proceedings of the 2015 IEEE International Conference on Data Mining. Piscataway, NJ:IEEE, 2015:71-80. [27] XIANG Z, CHEN Z, GAO X, et al. Solving large-scale TSP using a fast wedging insertion partitioning approach[J]. Mathematical Problems in Engineering, 2015, 2015:Article ID 854218. [28] JIANG X, CHEN Y, LIU J, et al. Real-time and accurate indoor localization with fusion model of Wi-Fi fingerprint and motion particle filter[J]. Mathematical Problems in Engineering, 2015, 2015:Article ID 545792. [29] CHEN Z, CHEN Y, HU L, et al. ContextSense:unobtrusive discovery of incremental social context using dynamic bluetooth data[C]//UbiComp 2014:Proceedings of the 2014 Adjunct Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing:Adjunct Publication. New York:ACM, 2014:23-26. [30] ZHANG H, YUAN J, GAO X, et al. Boosting cross-media retrieval via visual-auditory feature analysis and relevance feedback[C]//MM 2014:Proceedings of the 22nd ACM International Conference on Multimedia. New York:ACM, 2014:953-956. [31] GAO X, HOI S, ZHANG Y, et al. SOML:sparse online metric learning with application to image retrieval[C]//AAAI 2014:Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. Menlo Park:AAAI Press, 2014:1206-1212. [32] CHEN Z, CHEN Y, WANG S, et al. Inferring social contextual behavior from bluetooth traces[C]//UbiComp 2013:Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication. New York:ACM, 2013:267-270. [33] CHEN Z, WANG S, SHEN Z, et al. Online sequential ELM based transfer learning for transportation mode recognition[C]//Proceedings of the 2013 IEEE Conference on Cybernetics and Intelligent Systems. Piscataway, NJ:IEEE, 2013:78-83. [34] HU L, CHEN Y, WANG S, et al. OKRELM:online kernelized and regularized extreme learning machine for wearable-based activity recognition[J]. International Journal of Machine Learning and Cybernetics, 2016:1-14. [35] HAGER W W. Updating the inverse of a matrix[J]. SIAM Review, 1989, 31(2):221-239. [36] WANG W, HOU Z G, CHENG L, et al. Toward patients' motion intention recognition:dynamics modeling and identification of iLeg-an LLRR under motion constraints[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 46(7):980-992. [37] OJETOLA O, GAURA E, BRUSEY J. Data set for fall events and daily activities from inertial sensors[C]//MMSys 2015:Proceedings of the 6th ACM Multimedia Systems Conference. New York:ACM, 2015:243-248. [38] OJETOLA O. Detection of human falls using wearable sensors[D]. Coventry, UK:Coventry University, 2014:49-66. [39] ALTUN K, BARSHAN B. Human activity recognition using inertial/magnetic sensor units[C]//HBU 2010:Proceedings of the First International Workshop on Human Behavior Understanding, LNCS 6219. Berlin:Springer, 2010:38-51. |