[1] 中华人民共和国国家统计局.中华人民共和国2016年国民经济和社会发展统计公报[EB/OL].[2017-10-16].http://www.stats.gov.cn/tjsj/zxfb/201702/t20170228_1467424.html.(National Bureau of Statistics of the People's Republic of China. Statistical Communiqué of the People's Republic of China on the 2016 National Economic and Social Development[EB/OL].[2017-10-16]. http://www.stats.gov.cn/tjsj/zxfb/201702/t20170228_1467424.html.) [2] 张承玺.固定场景下的人体姿态识别[D].哈尔滨:哈尔滨工业大学,2014:50-55.(ZHANG C X. Recognition of human body postures in a fixed scene[D]. Harbin:Harbin Institute of Technology, 2014:50-55.) [3] 李靖意.基于Kinect深度图像人体动作识别研究[D].北京:北京邮电大学,2015:40-45.(LI J Y. The study of human action recognition based on Kinect depth image[D]. Beijing:Beijing University of Posts and Telecommunications, 2015:40-45.) [4] BOURKE A K, O'DONOVAN K J, OLAIGHIN G. The identification of vertical velocity profiles using an inertial sensor to investigate pre-impact detection of falls[J]. Medical Engineering & Physics, 2008, 30(7):937-946. [5] ANGUITA D, GHIO A, ONETO L, et al. Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine[C]//Proceedings of the 2012 International Workshop on Ambient Assisted Living, LNCS 7657. Berlin:Springer, 2012:216-223. [6] TONG L, SONG Q J, GE Y J, et al. HMM-based human fall detection and prediction method using tri-axial accelerometer[J]. IEEE Sensors Journal, 2013, 13(5):1849-1856. [7] 吴科艳,张舒雅,黄炎子,等.基于邻域一致性和DBPSO的跌倒检测特征集优化算法[J].计算机与现代化,2017(11):6-12.(WU K Y, ZHANG S Y, HUANG Y Z, et al. Feature set optimization algorithm of fall detection based on neighborhood consistency and DBPSO[J]. Computer and Modernization, 2017(11):6-12.) [8] 张舒雅,吴科艳,黄炎子,等.基于SVM_KNN的老人跌倒检测算法[J].计算机与现代化,2017(12):49-55.(ZHANG S Y, WU K Y, HUANG Y Z, et al. Fall detection algorithm based on SVM_KNN[J]. Computer and Modernization, 2017(12):49-55.) [9] LECUN Y, BOSER B, DENKER J S, et al. Handwritten digit recognition with a back-propagation network[M]//Advances in Neural Information Processing Systems 2. San Francisco, CA:Morgan Kaufmann, 1990:396-404. [10] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507. [11] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444. [12] GRAVES A, MOHAMED A R, HINTON G. Speech recognition with deep recurrent neural networks[C]//Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ:IEEE, 2013:6645-6649. [13] LECUN Y, BENGIO Y. Convolutional networks for images, speech, and time series[EB/OL].[2017-10-16]. http://www.utm.mx/~jjf/rna/A12%20Convolutional%20networks%20for%20images,%20speech,%20and%20time%20series.pdf. [14] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [15] SUNDERMEYER M, SCHLVTER R, NEY H. LSTM neural networks for language modeling[EB/OL].[2017-10-16]. http://www.quaero.org/media/files/bibliographie/sundermeyer_lstm_neural_interspeech2012.pdf. [16] GRAVES A, FERNÁNDEZ S, SCHMIDHUBER J. Bidirectional LSTM networks for improved phoneme classification and recognition[C]//Proceedings of the 200515th International Conference on Artificial Neural Networks:Formal Models and Their Applications. Berlin:Springer, 2005:799-804. [17] GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget:Continual prediction with LSTM[J]. Neural Computation, 2000, 12(10):2451-2471. [18] SOFIYANTI N, FITMAWATI D I, ROZA A A. Understanding LSTM networks[J]. GITHUB Colah Blog, 2015, 22(2):137-141. [19] DAUPHIN Y N, PASCANU R, GULCEHRE C, et al. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2014:2933-2941. |