[1] 姚旭, 王晓丹, 张玉玺, 等. 特征选择方法综述[J]. 控制与决策, 2012, 27(2):161-166. (YAO X, WANG X D, ZHANG Y X, et al. Summary of feature selection algorithms[J]. Control and Decision, 2012, 27(2):161-166.) [2] 梁吉业, 钱宇华, 李德玉, 等. 大数据挖掘的粒计算理论与方法[J]. 中国科学:信息科学, 2015, 45(11):1355-1369. (LIANG J Y, QIAN Y H, LI D Y, et al. Theory and method of granular computing for big data mining[J]. Science China:Information Science, 2015, 45(11):1355-1369.) [3] 杨明. 一种基于改进差别矩阵的属性约简增量式更新算法[J]. 计算机学报, 2007, 30(5):5815-5822. (YANG M. An incremental updating algorithm for attribute reduction based on improved discernibility matrix[J]. Chinese Journal of Computers, 2007, 30(5):5815-5822.) [4] CHEN H M, LI T R, QIAN S J. A rough set based dynamic maintenance approach for approximations in coarsening and refining attribute values[J]. International Journal of Intelligent Systems, 2010, 25(10):1005-1026. [5] LIANG J Y, WANG F, DANG C Y. A group incremental approach to feature selection applying rough set technique[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(2):294-308. [6] 王永生, 郑雪峰, 锁延锋. 一种基于信息粒度的动态属性约简求解算法[J]. 计算机科学, 2015, 42(4):213-216. (WANG Y S, ZHENG X F, SUO Y F. Dynamic attribute for computing algorithm reduction based on information granularity[J]. Computer Science, 2015, 42(4):213-216.) [7] 张钧波, 李天瑞, 潘毅. 云平台下基于粗糙集的并行增量知识更新算法[J]. 软件学报, 2015, 26(5):1064-1078. (ZHANG J B, LI T R, PAN Y. Parallel and incremental algorithm for knowledge update based on rough sets in cloud platform[J]. Journal of Software, 2015, 26(5):1064-1078.) [8] 钱文彬, 杨炳儒, 徐章艳, 等.基于信息熵的核属性增量式高效更新算法[J]. 模式识别与人工智能, 2013, 26(1):42-49. (QIAN W B, YANG B R, XU Z Y, et al. Efficient incremental updating algorithm for core attribute based on information entropy[J]. Pattern Recognition and Artificial Intelligence, 2013, 26(1):42-49.) [9] 王磊, 李天瑞, 刘清, 等. 对象集变化时近似集动态维护的矩阵方法[J]. 计算机研究与发展, 2013, 50(9):1992-2004. (WANG L, LI T R, LIU Q, et al. A matrix based method approach for maintenance of approximate under the variation of object set[J]. Journal of Computer Research and Development, 2013, 50(9):1992-2004.) [10] 沈家兰, 汪小燕, 申元霞. 可变程度多粒度粗糙集[J]. 小型微型计算机系统, 2016, 37(5):1012-1016. (SHEN J L, WANG X Y, SHEN Y X. Variable degree multi-grained rough set[J]. Journal of Chinese Computer Systems, 2016, 37(5):1012-1016.) [11] LIU D, LI T R, ZHANG J B. A rough set-based incremental approach for learning knowledge in dynamic incomplete information systems[J]. International Journal of Approximate Reasoning, 2014, 55(8):1764-1786. [12] 钱宇华, 梁吉业, 王锋. 面向非完备决策表的正向近似特征选择加速算法[J]. 计算机学报, 2011, 34(3):3435-3442. (QIAN Y H, LIANG J Y, WANG F. A positive approximation based accelerated algorithm to feature selection from incomplete decision tables[J]. Chinese Journal of Computers, 2011, 34(3):3435-3442.) [13] 李楠, 谢娟英. 基于邻域粗糙集的增量特征选择[J]. 计算机技术与发展, 2011, 21(11):149-152. (LI N, XIE J Y. A feature subset algorithm based on neighborhood rough set for incremental updating datasets[J]. Computer Technology and Development, 2011, 21(11):149-152.) [14] 张扩, 续欣莹, 阎高伟, 等. 信息观下批增量式属性约简算法[J]. 山西大学学报(自然科学版), 2016, 39(3):357-370. (ZHANG K, XU X Y, YAN G W, et al. Batch of incremental attribute reduction algorithm under information view[J]. Journal of Shanxi University (Natural Science Edition), 2016, 39(3):357-370.) [15] 徐久成, 张灵均, 孙林. 广义邻域关系下不完备混合决策系统的约简[J]. 计算机科学, 2013, 40(4):244-248. (XU J C, ZHANG L J, SUN L. Reduction in incomplete hybrid decision systems based on generalized neighbourhood relationship[J]. Computer Science, 2013, 40(4):244-248.) [16] 梁吉业, 李德玉. 信息系统中的不确定性与知识获取[M]. 北京:科学出版社, 2005. (LIANG J Y, LI D Y. Uncertainty and Knowledge Acquisition in Information Systems[M]. Beijing:Science Press, 2005.) [17] 米据生, 吴伟志, 张文修.基于变精度粗糙集理论的知识约简方法[J]. 系统工程理论与实践, 2004, 24(1):76-82. (MI J S, WU W Z, ZHANG W X. Knowledge reducts based on variable precision rough set theory[J]. Systems Engineering-Theory and Practice, 2004, 24(1):76-82.) [18] 张宁, 范年柏. 基于邻域近似条件熵的启发式属性约简[J]. 计算机应用研究, 2018, 35(5):1-2. (ZHANG N, FAN N B. Heuristic attribute reduction based on neighborhood approximate conditional entropy[J]. Application Research of Computers, 2018, 35(5):1-2.) |