[1] WIN S. What are the possible future research directions for bank's credit risk assessment research? A systematic review of literature[J]. International Economics and Economic Policy, 2018, 15(4):743-759. [2] WIGINTON J C. A note on the comparison of logit and discriminant models of consumer credit behavior[J]. Journal of Financial and Quantitative Analysis, 1980, 15(3):757-771. [3] DESAI V S, CROOK J N, JR OVERSTREET G A. A comparison of neural networks and linear scoring models in the credit union environment[J]. European Journal of Operational Research, 1996, 95(1):24-37. [4] BAESENS B, van GESTEL T, VIAENE S, et al. Benchmarking state-of-the-art classification algorithms for credit scoring[J]. Journal of the Operational Research Society, 2003, 54(6):627-635. [5] DAVIS S, ALBRIGHT T. An investigation of the effect of Balanced Scorecard implementation on financial performance[J]. Management Accounting Research, 2004, 15(2):135-153. [6] 李志辉,李萌.我国商业银行信用风险识别模型及其实证研究[J].经济科学,2005(5):61-71.(LI Z H, LI M. Credit risk identification model of Chinese commercial banks and its empirical study[J]. Economic Science, 2005(5):61-71.) [7] 王春峰,赵欣,韩冬.基于改进蚁群算法的商业银行信用风险评估方法[J].天津大学学报(社会科学版),2005,7(2):81-85.(WANG C F, ZHAO X, HAN D. A model on modified ants algorithm for credit risk assessment in commercial banks[J].Journal of Tianjin University (Social Sciences), 2005, 7(2):81-85.) [8] 方匡南,吴见彬,朱建平,等.随机森林方法研究综述[J].统计与信息论坛,2011,26(3):32-38.(FANG K N, WU J B, ZHU J P, et al. A review of technologies on random forests[J]. Statistic & Information Forum, 2011, 26(3):32-38.) [9] 萧超武,蔡文学,黄晓宇,等.基于随机森林的个人信用评估模型研究及实证分析[J].管理现代化,2014,34(6):111-113.(XIAO C W, CAI W X, HUANG X Y, et al. Research and empirical analysis of personal credit evaluation model based on random forest[J]. Modernization of Management, 2014, 34(6):111-113.) [10] 李进.基于随机森林算法的绿色信贷信用风险评估研究[J].金融理论与实践,2015(11):14-18.(LI J. Study on green-credit risk assessment based on random forest algorithm[J]. Financial Theory & Practice, 2015(11):14-18.) [11] 杨爱香.浅析我国商业银行信贷风险管理的现状及对策[J].时代金融,2015(30):37,39.(YANG A X. A brief analysis of China's commercial banks credit risk management status and countermeasures[J]. Times Finance, 2015(30):37,39.) [12] 封化民,李明伟,侯晓莲,等.基于SMOTE和GBDT的网络入侵检测方法研究[J].计算机应用研究,2017,34(12):3745-3748.(FENG H M, LI M W, HOU X L, et al. Study of network intrusion detection method based on SMOTE and GBDT[J]. Application Research of Computers, 2017, 34(12):3745-3748.) [13] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1):321-357. [14] HE H B, BAI Y, GARCIA E A, et al. ADASYN:adaptive synthetic sampling approach for imbalanced learning[C]//Proceeding of the 2008 IEEE International Joint Conference on Neural Networks. Piscataway, NJ:IEEE, 2008:1322-1328. [15] HAN H, WANG W Y, MAO B H. Borderline-SMOTE:a new over-sampling method in imbalanced data sets learning[C]//ICIC 2005:Proceedings of the 2005 International Conference on Advances in Intelligent Computing. Berlin:Springer, 2005:878-887. [16] 赵楠,张小芳,张利军.不平衡数据分类研究综述[J].计算机科学,2018,45(6A):22-27,57.(ZHAO N, ZHANG X F, ZHANG L J. Overview of imbalanced data classification[J].Computer Science, 2018, 45(6A):22-27,57.) [17] 沈学利,覃淑娟.基于SMOTE和深度信念网络的异常检测[J].计算机应用,2018,38(7):1941-1945.(SHEN X L, QIN S J. Anomaly detection based on synthetic minority oversampling technique and deep belief network[J]. Journal of Computer Applications, 2018, 38(7):1941-1945.) [18] 王超学,张涛,马春森.面向不平衡数据集的改进型SMOTE算法[J].计算机科学与探索,2014,8(6):727-734.(WANG C X, ZHANG T, MA C S. Improved SMOTE algorithm for imbalanced datasets[J]. Journal of Frontiers of Computer Science and Technology, 2014, 8(6):727-734.) [19] BARUA S, ISLAM M M, YAO X, et al. MWMOTE - Majority weighted minority oversampling technique for imbalanced data set learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(2):405-425. [20] 叶晓枫,鲁亚会.基于随机森林融合朴素贝叶斯的信用评估模型[J].数学的实践与认识,2017,47(2):68-73.(YE X F, LU Y H. Credit assessment model based on random forest and navie bayes[J]. Mathematics in Practice and Theory, 2017, 47(2):68-73.) [21] 李诒靖,郭海湘,李亚楠,等.一种基于Boosting的集成学习算法在不均衡数据中的分类[J].系统工程理论与实践,2016,36(1):189-199.(LI Y J, GUO H X, LI Y N, et all. A boosting based ensemble learning algorithm in imbalanced data classification[J]. Systems Engineering - Theory & Practice, 2016, 36(1):189-199) [22] HAND D J, TILL R J. A simple generalization of the area under the ROC curve for multiple class classification problems[J].Machine Learning, 2001, 45(2):171-186 [23] 蒋帅.基于AUC的分类器性能评估问题研究[D].长春:吉林大学,2016:10-17.(JIANG S. Researches of performance evaluation of classifier based on AUC[D]. Changchun:Jilin University, 2016:10-17.) |