[1] LYU L Y, ZHOU T. Link prediction in complex networks:a survey[J]. Physica A:Statistical Mechanics and its Applications, 2011, 390(6):1150-1170. [2] AHN M W, JUNG W S. Accuracy test for link prediction in terms of similarity index:the case of WS and BA models[J]. Physica A:Statistical Mechanics and its Applications, 2015, 429:177-183. [3] HOFFMAN M, STEINLEY D, BRUSCO M J. A note on using the adjusted rand index for link prediction in networks[J]. Social Networks, 2015, 42:72-79. [4] 刘思,刘海,陈启买,等.基于网络表示学习与随机游走的链路预测算法[J].计算机应用,2017,37(8):2234-2239.(LIU S, LIU H, CHEN Q M, et al. Link prediction algorithm based on network representation learning and random walk[J]. Journal of Computer Applications, 2017, 37(8):2234-2239.) [5] NEWMAN M E. Clustering and preferential attachment in growing networks[J]. Physical Review E:Statistical, Nonlinear, and Soft Matter Physics, 2001, 64(2 Pt 2):025102. [6] JACCARD P. Etude comparative de la distribution florale dans une portion des Alpes et du Jura[J]. Bulletin de la Société Vaudoise des Sciences Naturelles, 1901, 37:547-579. [7] ADAMIC L A, ADAR E. Friends and neighbors on the Web[J]. Social Networks, 2003, 25(3):211-230. [8] 涂存超,杨成,刘知远,等.网络表示学习综述[J].中国科学:信息科学,2017,47(8):980-996.(TU C C, YANG C, LIU Z Y, et al. Network representation learning:an overview[J]. SCIENTIA SINICA Informationis, 2017, 47(8):980-996.) [9] PEROZZI B, AI-RFOU R, SKIENA S. DeepWalk:online learning of social representations[C]//KDD 2014:Proceedings of the 201420th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2014:701-710. [10] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//NIPS13:Proceedings of the 26th International Conference on Neural Information Processing Systems. North Miami Beach, FL:Curran Associates Inc., 2013:3111-3119. [11] TANG J, QU M, WANG M Z, et al. LINE:large-scale information network embedding[C]//WWW 2015:Proceedings of the 24th International Conference on World Wide Web. Republic and Canton of Geneva, Switzerland:International World Wide Web Conferences Steering Committee, 2015:1067-1077. [12] GROVER A, LESKOVEC J. Node2vec:scalable feature learning for networks[C]//SIGKDD 2016:Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2016:855-864. [13] 侯建华,邓雨,陈思萌,等.基于深度特征和相关滤波器的视觉目标跟踪[J].中南民族大学学报(自然科学版),2018,37(2):67-73.(HOU J H, DENG Y, CHEN S M. Visual object tracking based on deep features and correlation filter[J]. Journal of South-Central University for Nationalities (Natural Science Edition), 2018, 37(2):67-73.) [14] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//CVPR 2016:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:770-778. [15] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//CVPR 2017:Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2017:2261-2269. [16] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//CVPR 2015:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015:1-9. [17] 齐金山,梁循,李志宇,等.大规模复杂信息网络表示学习:概念、方法与挑战[J].计算机学报,2018,41(10):2394-2420.(QIN J S, LIANG X, LI Z Y, et al. Representation learning of large-scale complex information network:concepts, methods and challenges[J]. Chinese Journal of Computers, 2018, 41(10):2394-2420.) [18] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//ICML 2015:Proceedings of the 201532nd International Conference on Machine Learning. Cambridge, MA:MIT Press, 2015:448-456. [19] ZHANG M H, CHEN Y X. Link prediction based on graph neural networks[EB/OL].[2018-09-13]. https://arxiv.org/abs/1802.09691. |