[1] GOLDBERG D E, LINGLE R, Jr. Alleles, Loci, and the traveling salesman problem[C]//Proceedings of the 1st International Conference on Genetic Algorithms. Hillsdale:L. Erlbaum Associates Inc., 1985:154-159. [2] ISMKHAN H, ZAMANIFAR K. Developing improved greedy crossover to solve symmetric traveling salesman problem[EB/OL].[2018-10-10]. https://arxiv.org/ftp/arxiv/papers/1209/1209.5339.pdf. [3] 袁豪. 旅行商问题的研究与应用[D]. 南京:南京邮电大学, 2017:5-6. (YUAN H. Research and application of traveling salesman problem[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2017:5-6.) [4] ARSHAD S, YANG S. A hybrid genetic algorithm and inver over approach for the travelling salesman problem[C]//Proceedings of the 2010 IEEE Congress on Evolutionary Computation. Piscataway:IEEE, 2010:1-8. [5] 王艳, 王秋萍, 王晓峰. 基于改进萤火虫算法求解旅行商问题[J]. 计算机系统应用, 2018, 27(8):219-225. (WANG Y, WANG Q P, WANG X F. Solving traveling salesman problem based on improved firefly algorithm[J]. Computer Systems & Applications, 2018, 27(8):219-225.) [6] KIRKPATRICK S, GELATT C D, VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598):671-680. [7] ATASHPAZ-GARGARI E, LUCAS C. Imperialist competitive algorithm:an algorithm for optimization inspired by imperialistic competition[C]//Proceedings of the 2007 IEEE Congress on Evolutionary Computation. Piscataway:IEEE, 2007:4661-4666. [8] 李明, 雷德明. 基于新型帝国竞争算法的高维多目标柔性作业车间调度[J].控制理论与应用, 2019, 36(6):893-901. (LI M, LEI D M. Novel imperialist competitive algorithm for many-objective flexible job shop scheduling[J]. Control Theory and Applications, 2019, 36(6):893-901.) [9] KAVEH A, TALATAHARI S. Optimum design of skeletal structures using imperialist competitive algorithm[J]. Computers & Structures, 2010, 88(21):1220-1229. [10] FOROUHARFARD S, ZANDIEH M. An imperialist competitive algorithm to schedule of receiving and shipping trucks in cross-docking systems[J]. The International Journal of Advanced Manufacturing Technology, 2010, 51(9/10/11/12):1179-1193. [11] 孟洪潮. 多策略改进的混合帝国竞争算法[J]. 价值工程, 2018, 37(14):193-195. (MENG H C. Improved imperialist competitive algorithm based on quantum behavior[J]. Value Engineering, 2018, 37(14):193-195.) [12] CHANG P, HUANG W, WU J, et al. A block mining and re-combination enhanced genetic algorithm for the permutation flowshop scheduling problem[J]. International Journal of Production Economics, 2013, 141(1):45-55. [13] CHEN M H, CHEN S H, CHANG P C. Imperial competitive algorithm with policy learning for the traveling salesman problem[J]. Soft Computing, 2017, 12(7):1863-1875. [14] HUANG W H, CHANG P C, WANG L C, et al. A fast block-based evolutional algorithm for combinatorial problems[J]. International Journal of Computer, Electrical, Automation, Control and Information Engineering, 2012, 6(7):889-895. [15] PASTI R, de CASTRO L N. A neuro-immune network for solving the traveling salesman problem[C]//Proceedings of the 2006 IEEE International Joint Conference on Neural Networks. Piscataway:IEEE, 2006:3760-3766. [16] SOMHOM S, MODARES A, ENKAWA T. A self-organizing model for the travelling salesman problem[J]. Journal of the Operational Research Society, 1997, 48(9):919-928. |