[1] GARGARI E,ATASHPAZ,LUCAS C. Imperialist competitive algorithm:an algorithm for optimization inspired by imperialistic competition[C]//Proceedings of the 2007 IEEE Congress on Evolutionary Computation. Piscataway:IEEE,2007:4661-4667. [2] BERNAL E, CASTILLO O, SORIA J, et sl. Imperialist competitive algorithm with dynamic parameter adaptation applied to the optimization of mathematical functions[J]. Algorithms,2017, 10(1):No. 18. [3] 陈孟辉, 刘俊麟, 徐健锋, 等. 求解旅行商问题的多样化搜索帝国竞争算法[J]. 计算机应用,2019,39(10):2992-2996. (CHEN M H,LIU J L,XU J F,et al. Imperialist competitive algorithm based on multiple search strategy for solving traveling salesman problem[J]. Journal of Computer Applications,2019,39(10):2992-2996.) [4] LIU C,JIA H. Multiobjective imperialist competitive algorithm for solving nonlinear constrained optimization problems[J]. Journal of Systems Science and Information,2019,7(6):532-549. [5] 张清勇, 王皓冉, 雷德明. 求解分布式并行机调度的新型帝国竞争算法[J]. 华中科技大学学报(自然科学版),2019,47(8):86-91. (ZHANG Q Y,WANG H R,LEI D M. Novel imperialist competitive algorithm for distributed parallel machine scheduling problem[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2019, 47(8):86-91.) [6] FAN X,ZHI B. Design for a crane metallic structure based on imperialist competitive algorithm and inverse reliability strategy[J]. Chinese Journal of Mechanical Engineering, 2017, 30(4):900-912. [7] KHALILNEJAD A,SUNDARARAJAN A,SARWAT A I. Optimal design of hybrid wind/photovoltaic electrolyzer for maximum hydrogen production using imperialist competitive algorithm[J]. Journal of Modern Power Systems and Clean Energy,2018,6(1):40-49. [8] 颜波, 石平, 王丽川,等. 基于改进帝国竞争算法的多产品供应链优化[J]. 系统工程,2014,32(4):15-20.(YAN B,SHI P, WANG L C,et al. Multi-product supply chain optimization based on improved imperialist competitive algorithm[J]. Systems Engineering,2014,32(4):15-20.) [9] HASANZADE-INALLU A,ZARFAM P,NIKOO M. Modified imperialist competitive algorithm-based neural network to determine shear strength of concrete beams reinforced with FRP[J]. Journal of Central South University,2019,26(11):3156-3174. [10] 刘敬浩, 毛思平, 付晓梅. 基于ICA算法与深度神经网络的入侵检测模型[J]. 信息网络安全,2019(3):1-10.(LIU J H,MAO S P,FU X M. Intrusion detection model based on ICA algorithm and deep neural network[J]. Netinfo Security,2019,19(3):1-10.) [11] ILLIAS H A, MOU K J, BAKAR A H A. Estimation of transformer parameters from nameplate data by imperialist competitive and gravitational search algorithms[J]. Swarm and Evolutionary Computation,2017,36:18-26. [12] 李明, 雷德明. 基于新型帝国竞争算法的高维多目标柔性作业车间调度[J]. 控制理论与应用,2019,36(6):893-901.(LI M, LEI D M. Novel imperialist competitive algorithm for manyobjective flexible job shop scheduling[J]. Control Theory and Applications,2019,36(6):893-901.) [13] GARGARI E A. Imperialist Competitive Algorithm (ICA)[EB/OL].[2019-01-10]. http://www.mathworks.com/matlabcentral/fileexchange/22046-imperialist-competitive-algorithm-ica. [14] 郭秀萍, 肖钦心. 求解混流双边拆解线平衡多目标问题的变邻域帝国竞争算法[J]. 管理工程学报,2019,33(4):122-129. (GUO X P,XIAO Q X. A variable neighborhood imperialist competitive algorithm for a mixed-model two-sided disassembly line balancing multi-objective problem[J]. Journal of Industrial Engineering and Engineering Management, 2019, 33(4):122-129.) [15] BAHRAMI H,FAEZ K,ABDECHIRI M. Imperialist Competitive Algorithm using Chaos theory for optimization (CICA)[C]//Proceedings of the 12th International Conference on Computer Modelling and Simulation. Piscataway:IEEE,2010:98-103. [16] LIN J L,TSAI Y H,YU C Y,et al. Interaction enhanced imperialist competitive algorithms[J]. Algorithms,2012,5(4):433-448. [17] ARDEH M A,MENHAJ M B,ESMAILIAN E,et al. EXPLICA:an explorative imperialist competitive algorithm based on the notion of explorers with an expansive retention policy[J]. Applied Soft Computing,2017,54:74-92. [18] XU S, WANG Y, LU P. Improved imperialist competitive algorithm with mutation operator for continuous optimization problems[J]. Neural Computing and Applications,2017,28(7):1667-1682. [19] 郭婉青, 叶东毅. 帝国竞争算法的进化优化[J]. 计算机科学与探索,2014,8(4):473-482.(GUO W Q,YE D Y. Evolutionary optimization of imperialist competitive algorithm[J]. Journal of Frontiers of Computer Science and Technology,2014,8(4):473-482.) [20] TANG D. Spherical evolution for solving continuous optimization problems[J]. Applied Soft Computing,2019,81:No. 105499. [21] 张新明, 姜云, 刘尚旺, 等. 灰狼与郊狼混合优化算法及其聚类优化[J/OL]. 自动化学报[2020-05-20]. https://doi.org/10.16383/j.aas.c190617. (ZHANG X M,JIANG Y,LIU S W,et al. Hybrid coyote optimization algorithm with grey wolf optimizer and its application to clustering optimization[J/OL]. Acta Automatica Sinica[2020-05-20]. https://doi.org/10.16383/j.aas.c190617.) [22] XIA X,TANG Y,WEI B,et al. Dynamic multi-swarm particle swarm optimization based on elite learning[J]. IEEE Access, 2019,7:184849-184865. [23] 喻飞, 吴瑞峰, 魏波, 等. 多精英采样与个体差分学习的分布估计算法[J]. 系统仿真学报,2020,32(3):382-393.(YU F,WU R F,WEI B,et al. An estimation of distribution algorithm based on multiple elites sampling and individuals differential search[J]. Journal of System Simulation,2020,32(3):382-393.) [24] AWAD N H,ALI M Z,LIANG J J,et al. Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization[R]. Singapore:Nanyang Technological University, 2016.) |