[1] 姚凤珍.植物工厂发展现状及趋势概述[J].中国照明电器,2016(12):16-18.(YAO F Z. Development situation and trend of the plant factory[J]. China Light and Lighting, 2016(12):16-18.) [2] 刘文科.植物工厂的发展现状与展望[J].中国照明电器,2016(12):5-9.(LIU W K. Review on current status and development prospects of plant factory[J]. China Light and Lighting, 2016(12):5-9.) [3] 刘文科.植物工厂发展的机遇与挑战[J].照明工程学报,2018,29(4):Ⅱ.(LIU W K. Opportunities and challenges of plant factory development[J]. China Illuminating Engineering Journal, 2018, 29(4):Ⅱ.) [4] 王伟丽.浅析国内外植物工厂发展现状[J].木工机床,2018(4):31-34.(WANG W L. A brief analysis of the current situation of plant factory development at home and abroad[J]. Woodworking Machinery, 2018(4):31-34.) [5] 刘文科,刘义飞.人工光植物工厂技术装备与产业发展的战略思考[J].中国农业科技导报,2018,20(9):32-39.(LIU W K, LIU Y F. Developmental strategies for technology and equipment and industry of plant factory with artificial lighting[J]. Journal of Agricultural Science and Technology, 2008, 20(9):32-39.) [6] 郑延海,裴克全.什么是"植物工厂"[J].生命世界,2017(4):4-7.(ZHENG Y H, PEI K Q. What is "plant factory"[J]. Life World, 2017(4):4-7.) [7] 李晓斌,王玉顺,付丽红.用K-means图像法和主成分分析法监测生菜生长势[J].农业工程学报,2016,32(12):179-186.(LI X B, WANG Y S, FU L H. Monitoring lettuce growth potential using K-means image method and principal component analysis method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(12):179-186.) [8] 赵诗宇.图像分割算法的分类与研究[J].科技风,2019(5):58-58.(ZHAO S Y. Classification and research of image segmentation algorithms[J]. Technology Trend, 2019(5):58-58.) [9] 郎春博,贾鹤鸣,邢致恺,等.基于改进正余弦优化算法的多阈值图像分割[J/OL].计算机应用研究[2019-03-04].http://www.arocmag.com/article/02-2020-04-058.html. (LANG C B, JIA H M, XING Z K, et al. Multi-threshold image segmentation based on improved sine-cosine optimization algorithm[J/OL]. Application Research of Computers[2019-03-04]. http://www.arocmag.com/article/02-2020-04-058.html.) [10] 易三莉,张桂芳,贺建峰,等.基于最大类间方差的最大熵图像分割[J].计算机工程与科学,2018,40(10):1874-1881.(YI S L, ZHANG G F, HE J F, et al. Maximum entropy image segmentation based on the variance between the largest classes[J]. Computer Engineering and Science, 2018, 40(10):1874-1881.) [11] 李文杰,夏海英,刘超.融合RSF模型及边缘检测LOG算子的图像分割方法的研究[J].南京邮电大学学报(自然科学版),2018,38(2):98-102.(LI W J, XIA H Y, LIU C. Image segmentation method based on RSF model and edge detection LOG operator[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2018, 38(2):98-102.) [12] 董怡.基于边缘信息的RGB-D图像分割算法研究[D].南京:南京邮电大学,2018:19-34.(DONG Y. Research on RGB-D image segmentation algorithm based on edge information[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2018:19-34.) [13] 洪向共,周世芬.基于灰度共生矩阵和区域生长算法的红外光伏面板图像分割[J].科学技术与工程,2018,18(34):92-97.(HONG X G, ZHOU S F. Infrared photoelectric panels image segmentation based on gray level co-occurrence matrix and region growing algorithm[J]. Science Technology and Engineering, 2018, 18(34):92-97.) [14] 胡学刚,段瑶,严思奇.基于区域合并的FCM图像分割改进算法[J].小型微型计算机系统,2018,39(9):2077-2080.(HU X G, DUAN Y, YAN S Q. Improved FCM image segmentation algorithm based on region merging[J]. Journal of Chinese Computer Systems, 2018, 39(9):2077-2080.) [15] 蒋秋霖,王昕.基于区域生长算法的脑肿瘤图像分割[J].长春工业大学学报,2018,39(5):490-493.(JIANG Q L, WANG X. Brain tumor image segmentation based on region growing algorithm[J]. Journal of Changchun University of Technology, 2008, 39(5):490-493.) [16] 万园洁,卿粼波,何小海,等.基于改进全卷积网络的小麦图像分割[J].计算机系统应用,2018,27(3):221-227.(WAN Y J, QING L B, HE X H, et al. Wheat image segmentation based on improved full convolution network[J]. Computer Systems and Applications, 2018, 27(3):221-227.) [17] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:3431-3440. [18] 贝琛圆,于海滨,潘勉,等.基于改进U-Net网络的腺体细胞图像分割算法[J].电子科技,2019(11):1-7.(BE C Y, YU H B, PAN M, et al. Gland cell image segmentation algorithm based on improved U-Net network[J]. Electronic Science and Technology, 2019(11):1-7.) [19] 王琢,汪雅婷,宋文龙,等.基于深度学习的叶片图像分割算法[J].森林工程,2019,35(1):42-46.(WANG Z, WANG Y T, SONG W L, et al. Leaf image segmentation algorithm based on deep learning[J]. Forest Engineering, 2019, 35(1):42-46.) [20] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham:Springer, 2015:234-241. [21] 杨思思,周泓,虞侠挺.基于机器视觉的人工光植物工厂植物生长状况监测系统[J].传感器与微系统,2014,33(12):88-90.(YANG S S, ZHOU H, YU J T. Plant growth monitoring system for artificial light plant factory based on machine vision[J]. Transducer and Microsystem Technologies, 2014, 33(12):88-90.) |