计算机应用 ›› 2019, Vol. 39 ›› Issue (11): 3403-3408.DOI: 10.11772/j.issn.1001-9081.2019040726

• 应用前沿、交叉与综合 • 上一篇    下一篇

嵌入互联网舆情强度的人民币汇率预测

王吉祥1, 过弋1,2,3, 戚天梅1, 王志宏1, 李真4, 汤敏伟4   

  1. 1. 华东理工大学 信息科学与工程学院, 上海 200237;
    2. 大数据流通与交易技术国家工程实验室, 上海 200237;
    3. 上海大数据与互联网受众工程技术研究中心, 上海 200072;
    4. 天翼电子商务有限公司 风险管理部, 上海 200085
  • 收稿日期:2019-04-28 修回日期:2019-07-09 发布日期:2019-08-26 出版日期:2019-11-10
  • 通讯作者: 过弋
  • 作者简介:王吉祥(1995-),女,浙江温州人,硕士研究生,CCF学生会员,主要研究方向:自然语言处理、数据挖掘;过弋(1975-),男,江苏无锡人,教授,博士,主要研究方向:文本挖掘、知识发现;戚天梅(1994-),女,安徽滁州人,硕士研究生,主要研究方向:自然语言处理、数据挖掘;王志宏(1990-),男,江苏泰兴人,博士研究生,主要研究方向:自然语言处理、文本挖掘;李真(1976-),女,陕西西安人,博士,主要研究方向:金融风险管理、欺诈风险防范;汤敏伟(1990-),男,江苏无锡人,硕士,主要研究方向:异常事件检测、恶意群体识别。
  • 基金资助:
    国家重点研发计划项目(2018YFC0807105);国家自然科学基金资助项目(61462073);上海市科学技术委员会科研计划项目(17DZ1101003,18511106602,18DZ2252300)。

RMB exchange rate forecast embedded with Internet public opinion intensity

WANG Jixiang1, GUO Yi1,2,3, QI Tianmei1, WANG Zhihong1, LI Zhen4, TANG Minwei4   

  1. 1. School of Information Science and Engineering, East University of Science and Technology, Shanghai 200237, China;
    2. National Engineering Laboratory for Big Data Distribution and Exchange Technologies, Shanghai 200237, China;
    3. Shanghai Engineering Research Center of Big Data and Internet Audience, Shanghai 200072, China;
    4. Department of Risk Management, China Telecom BestPay Company Limited, Shanghai 200085, China
  • Received:2019-04-28 Revised:2019-07-09 Online:2019-08-26 Published:2019-11-10
  • Supported by:
    This work is partially supported by the National Key Research and Development Program of China (2018YFC0807105), the National Natural Science Foundation of China (61462073), the Scientific Research Project of Science and Technology Committee of Shanghai Municipality (17DZ1101003, 18511106602, 18DZ2252300).

摘要: 针对目前人民币汇率预测研究存在的数据源单一导致难以提升预测效果的问题,提出一种嵌入互联网舆情强度的预测技术,通过融合多方面数据源进行对比分析,有效降低了人民币汇率的预测误差。首先,融合互联网外汇新闻数据和历史行情数据,并将多源文本数据转化为可计算的特征向量;其次,通过情感特征向量构建五种特征组合并对其进行对比,给出了嵌入互联网舆情强度的特征组合作为预测模型输入;最后,设计外汇舆情影响汇率预测的滑动时间窗口,建立基于机器学习的汇率预测模型。实验结果表明,嵌入互联网舆情的特征组合相对于不含舆情的特征组合在均方根误差(RMSE)和平均绝对误差(MAE)上分别提升了9.8%和16.2%;此外,长短期记忆网络(LSTM)预测模型比支持向量回归(SVR)、决策回归(DT)和深度神经网络(DNN)预测模型表现更好。

关键词: 机器学习, 文本向量化, 舆情影响力, 汇率预测, 滑动时间窗口

Abstract: Aiming at the low prediction effect caused by single data source in the current RMB exchange rate forecast research, a forecast technology based on Internet public opinion intensity was proposed. By comparing and analyzing various data sources, the forecast error of RMB exchange rate was effectively reduced. Firstly, the Internet foreign exchange news data and historical market data were fused, and the multi-source text data were converted into the computable vectors. Secondly, five feature combinations based on sentiment feature vectors were constructed and compared, and the feature combination embedded with intensity of Internet public opinion was given as the input of forecast models. Finally, a temporal sliding window of foreign exchange public opinion data was designed, and an exchange rate forecast model based on machine learning was built. Experimental results show that feature combination embedded with Internet public opinion outperforms the feature combination without public opinion by 9.8% and 16.2% in Root Mean Squared Error (RMSE) and Mean Squared Error (MAE). At the same time, the forecast model based on Long Short-Term Memory network (LSTM) is better than that based on Support Vector Regression (SVR), Decision Tree regression (DT) and Deep Neural Network (DNN).

Key words: machine learning, text embedding, public opinion impact, exchange rate forecast, temporal sliding window

中图分类号: