[1] 秦喜文,张瑜,董小刚,等. 基于EEMD和SVR的人民币汇率预测[J].东北师大学报(自然科学版), 2017, 49(2):47-51. (QIN X W, ZHANG Y, DONG X G, et al. Forecasting RMB exchange rate based on EEMD and SVR[J]. Journal of Northeast Normal University (Natural Science Edition), 2017, 49(2):47-51.) [2] 马超. 人民币汇率预测[D]. 济南:山东大学, 2017:8-56. (MA C. RMB exchange rate forecast[D]. Jinan:Shandong University, 2017:8-56.) [3] FÖRSCHLER F, ALFANO S. Reading between the lines:The effect of language sentiment on economic indicators[C]//Proceedings of the 2017 Enterprise Applications, Markets and Services in the Finance Industry, LNBIP 276. Berlin:Springer, 2017:89-104. [4] 赵岩,王利明,杨菁. 公共危机事件网络舆情生命周期特征分析及对策研究[J]. 经济研究参考, 2015(16):57-69. (ZHAO Y, WANG L M, YANG J. Analysis of the characteristics of public opinion cycle of public crisis events and its countermeasures[J]. Economic Research Reference, 2015(16):57-69.) [5] 丁洁. 基于社会网络的网络舆情演化研究[D]. 南京:南京理工大学, 2015:38-44. (DING J. Analysis on the evolution of online public opinion based on social network[D]. Nanjing:Nanjing University of Science and Technology, 2015:38-44.) [6] PAGOLU V S, REDDY K N, PANDA G, et al. Sentiment analysis of Twitter data for predicting stock market movements[C]//Proceedings of the 2016 International Conference on Signal Processing, Communication, Power and Embedded System. Piscataway:IEEE, 2016:1345-1350. [7] 陈云松,严飞. 网络舆情是否影响股市行情?基于新浪微博大数据的ARDL模型边限分析[J]. 社会, 2017, 37(2):51-73. (CHEN Y S, YAN F. Does online sentiment predict stock market indices? The ARDL bounds tests based on Sina-microblog data[J]. Society, 2017, 37(2):51-73.) [8] 张信东,原东良. 基于微博的投资者情绪对股票市场影响研究[J]. 情报杂志, 2017, 36(8):81-87. (ZHANG X D, YUAN D L. Research on the impact of investor sentiment on stock market based on micro-blog[J]. Journal of Intelligence, 2017, 36(8):81-87.) [9] 朱昶胜,孙欣,冯文芳. 基于R语言的网络舆情对股市影响研究[J]. 兰州理工大学学报, 2018, 44(4):103-108. (ZHU C S, SUN X, FENG W F. Study on the impact of network public opinion on the stock market based on R-language[J]. Journal of Lanzhou University of Technology, 2018, 44(4):103-108.) [10] LI Q, WANG J, WANG F, et al. The role of social sentiment in stock markets:a view from joint effects of multiple information sources[J]. Multimedia Tools and Applications, 2017, 76(10):12315-12345. [11] THU T N T, XUAN V D. Using support vector machine in FoRex predicting[C]//Proceedings of the 2018 IEEE International Conference on Innovative Research and Development. Piscataway:IEEE, 2018:1-5. [12] SEE-TO E W K, YANG Y. Market sentiment dispersion and its effects on stock return and volatility[J]. Electronic Markets, 2017, 27(3):283-296. [13] 邓景炜. 基于神经网络的外汇汇率预测研究[D]. 广东:暨南大学, 2017:56-65. (DENG J W. Research on foreign exchange rate forecast based on neural network[D]. Guangdong:Jinan University, 2017:56-65.) [14] LIU C, HOU W, LIU D. Foreign exchange rates forecasting with convolutional neural network[J]. Neural Processing Letters, 2017, 46(3):1095-1119. [15] CHEN W, ZHANG Y, YEO C K, et al. Stock market prediction using neural network through news on online social networks[C]//Proceedings of the 2017 International Smart Cities Conference. Piscataway:IEEE, 2017:1-6. [16] LIU Y, QIN Z, LI P, et al. Stock volatility prediction using recurrent neural networks with sentiment analysis[C]//Proceedings of the 2017 International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, LNCS 10350. Berlin:Springer, 2017:192-201. [17] AWAD M, KHANNA R. Support vector regression[J]. Neural Information Processing Letters and Reviews, 2007, 11(10):203-224. [18] QUINLAN J R. Induction on decision tree[J]. Machine Learning, 1986, 1(1):81-106. [19] SCHMIDHUBER J. Deep learning in neural networks:an overview[J]. Neural Networks, 2015, 61:85-117. [20] SHI X, CHEN Z, WANG H, et al. Convolutional LSTM network:a machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2015:802-810. [21] PEDREGOSA F, VAROQUAUX G, GRAMFORT A. Scikit-learn:machine learning in Python[J]. Journal of Machine Learning Research, 2011, 12:2825-2830. [22] 王嵘冰,徐红艳,李波,等. BP神经网络隐含层节点数确定方法研究[J]. 计算机技术与发展, 2018, 28(4):31-35. (WANG R B, XU H Y, LI B, et al. Research on the method of determining hidden layer nodes in BP neural network[J]. Computer Technology and Development, 2018, 28(4):31-35.) |