[1] 王一伊. 我国反恐问题定量分析研究综述[J]. 情报杂志, 2017, 36(11):23-27. (WANG Y Y. Research summary on quantitative analysis of anti-terrorism research in China[J]. Journal of Intelligence, 2017, 36(11):23-27.) [2] 杨剑锋,乔佩蕊,李永梅,等. 机器学习分类问题及算法研究综述[J]. 统计与决策, 2019, 35(6):36-40. (YANG J F, QIAO P R, LI Y M, et al. A review of machine-learning classification and algorithms[J]. Statistics and Decision, 2019, 35(6):36-40.) [3] HU X, LAI F, CHEN G, et al. Quantitative research on global terrorist attacks and terrorist attack classification[J]. Sustainability, 2019, 11(5):No.1487. [4] MOHAMMED D Y, KARABATAK M. Terrorist attacks in Turkey:an evaluate of terrorist acts that occurred in 2016[C]//Proceedings of the 6th International Symposium on Digital Forensic and Security. Piscataway:IEEE, 2018:1-3. [5] BISHOP C M. Pattern Recognition and Machine Learning[M]. New York:Springer, 2006:112-126. [6] SINGH S, VERMA S, TIWARI A. A novel way to classify passenger data using Naïve Bayes algorithm (a real time anti-terrorism approach)[C]//Proceedings of the 2nd International Conference on Next Generation Computing Technologies. Piscataway:IEEE, 2016:312-316. [7] 叶鹏. 基于机器学习的中文期刊论文自动分类研究[D]. 南京:南京大学, 2013:5-7. (YE P. Automatic classification of Chinese journal papers based on machine learning[D]. Nanjing:Nanjing University, 2013:5-7.) [8] RESSLER S. Social network analysis as an approach to combat terrorism:past, present, and future research[J]. Homeland Security Affairs, 2016, 2(2):No.171. [9] BOGANNON J. Counter-terrorism's new tool:‘Metanetwork’ analysis[J]. Science, 2009, 325(5939):409-411. [10] 冒伟. 未来反恐态势预测研究[J]. 软件导刊, 2019, 18(7):28-31. (MAO W. Research on future counter-terrorism situation based on big data analysis[J]. Software Guide, 2019, 18(7):28-31.) [11] MO H, MENG X, LI J, et al. Terrorist event prediction based on revealing data[C]//Proceedings of the 2nd International Conference on Big Data Analysis. Piscataway:IEEE, 2017:239-244. [12] XU J, CHEN J, LI B. Random forest for relational classification with application to terrorist profiling[C]//Proceedings of the 2009 IEEE International Conference on Granular Computing. Piscataway:IEEE, 2009:630-633. [13] 薛安荣,毛文渊,王孟頔,等. 基于贝叶斯方法和变化表的恐怖行为预测算法[J]. 计算机科学, 2016, 43(12):130-134. (XUE A R, MAO W Y, WANG M D, et al. Terrorism prediction based on Bayes method and change table[J]. Computer Science, 2016, 43(12):130-134.) [14] 李慧,张南南,曹卓,等. 基于机器学习的恐怖分子预测算法[J]. 计算机工程, 2020, 46(2):315-320. (LI H, ZHANG N N, CAO Z, et al. Terrorist prediction algorithm based on machine learning[J]. Computer Engineering, 2020, 46(2):315-320.) [15] MILLER E, LAFREE G, DUGAN L. Global terrorism database[DB/OL].[2019-12-20].http://www.start.umd.edu/gtd/. [16] 杨静,张楠男,李建,等. 决策树算法的研究与应用[J]. 计算机技术与发展, 2010, 20(2):114-116, 120. (YANG J, ZHANG N N, LI J, et al. Research and application of decision tree algorithm[J]. Computer Technology and Development, 2010, 20(2):114-116, 120.) [17] 谢霖铨,徐浩,陈希邦,等. 基于PCA的决策树优化算法[J]. 软件导刊, 2019, 18(9):69-71,76. (XIE L Q, XU H, CHEN X B, et al. PCA-based decision tree optimization algorithm[J]. Software Guide, 2019, 18(9):69-71,76.) [18] LIU Y, ZHAO H. Variable importance-weighted random forests[J]. Quantitative Biology, 2017, 5(4):338-351. [19] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1):5-32. [20] 马景义,谢邦昌. 用于分类的随机森林和Bagging分类树比较[J]. 统计与信息论坛, 2010, 25(10):18-22. (MA J Y, XIE B C. A comparison on random forest and bagging classification tree in classification[J]. Statistics and Information Forum, 2010, 25(10):18-22.) [21] 夏润,张晓龙. 基于改进集成学习算法的在线空气质量预测[J]. 武汉科技大学学报, 2019, 42(1):61-67. (XIA R, ZHANG X L. Online air quality prediction based on improved ensemble learning algorithm[J]. Journal of Wuhan University of Science and Technology, 2019, 42(1):61-67.) [22] 曹渝昆,朱萌,王晓飞. 基于特征选择和XGBoost的风机叶片结冰预测[J]. 电气自动化, 2019, 41(3):31-33, 118. (CAO Y K, ZHU M, WANG X F. Wind turbine blade icing forecast based on feature selection and XGBoost[J]. Electrical Automation, 2019, 41(3):31-33, 118.) [23] 李琦,孙咏,焦艳菲,等. 基于HMIGW特征选择和XGBoost的毕业生就业预测方法[J]. 计算机系统应用, 2019, 28(6):203-208. (LI Q, SUN Y, JIAO Y F, et al. Graduates employment forecasting method based on HMIGW feature selection and XGBoost[J]. Computer Systems and Applications, 2019, 28(6):203-208.) [24] ANAISSI A, KENNEDY P J, GOYAL M, et al. A balanced iterative random forest for gene selection from microarray data[J]. BMC Bioinformatics, 2013, 14:No.261. [25] BERGSTR J, BENGIO Y. Random search for hyper-parameter optimization[J]. The Journal of Machine Learning Research, 2012,13(1):281-350. [26] BERGSTRA J, YAMINS D, COX D D. Making a science of model search:hyperparameter optimization in hundreds of dimensions for vision architectures[C]//Proceedings of the 30th International Conference on Machine Learning. New York:JMLR.org, 2013:115-123. [27] SNOEK J, LAROCHELLE H, ADAMS R P. Practical Bayesian optimization of machine learning algorithms[EB/OL].[2019-12-20].https://arxiv.org/pdf/1206.2944.pdf. [28] BROCHU E, CORA V M, DE FREITAS N. A tutorial on Bayesian optimization of expensive cost functions with application to active user modeling and hierarchical reinforcement learning[D]. Ithaca:Cornell University, 2010:2-10.) [29] SHAHRIARI B, SWERSKY K, WAN Z, et al. Taking the human out of the loop:a review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1):148-175. [30] CHAWL N V, BOWYER K W, HALL L O, et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1):321-357. |