[1] 贺超. 核磁共振成像系统原理及MR图像研究[J]. 云南大学学报(自然科学版), 2010, 32(S1):245-248. (HE C. The study of principle of nuclear magnetic resonance imaging and MR image[J]. Journal of Yunnan University (Natural Sciences Edition), 2010, 32(S1):245-248.) [2] 樊晓宇,练秋生. 基于双稀疏模型的压缩感知核磁共振图像重构[J]. 生物医学工程学杂志, 2018, 35(5):688-696. (FAN X Y, LIAN Q S. Compressed sensing magnetic resonance image reconstruction based on double sparse model[J]. Journal of Biomedical Engineering, 2018, 35(5):688-696.) [3] 程晓良,郑璇,韩渭敏. 求解欠定线性方程组稀疏解的算法[J]. 高校应用数学学报, 2013, 28(2):235-248. (CHENG X L, ZHENG X, HAN W M. Algorithms on sparse solution of under-determined linear systems[J]. Applied Mathematics A Journal of Chinese Universities, 2013, 28(2):235-248.) [4] DONEVA M. Mathematical models for magnetic resonance imaging reconstruction:an overview of the approaches, problems, and future research areas[J]. IEEE Signal Processing Magazine, 2020, 37(1):24-32. [5] 占美全,邓志良. 基于L1范数的总变分正则化超分辨率图像重建[J]. 科学技术与工程, 2010, 10(28):6903-6906. (ZHAN M Q, DENG Z L. L1 norm of total variation regularization based super resolution reconstruction for images[J]. Science Technology and Engineering, 2010, 10(28):6903-6906.) [6] SELESNICK I W, PAREKH A, BAYRAM I. Convex 1-D total variation denoising with non-convex regularization[J]. IEEE Signal Processing Letters, 2015, 22(2):141-144. [7] SELESNICK I W, FARSHCHIAN M. Sparse signal approximation via nonseparable regularization[J]. IEEE Transactions on Signal Processing, 2017, 65(10):2561-2575. [8] SELESNICK I W. Total variation denoising via the Moreau envelope[J]. IEEE Signal Processing Letters, 2017, 24(2):216-220. [9] SELESNICK I W. Sparse regularization via convex analysis[J]. IEEE Transactions on Signal Processing, 2017, 65(17):4481-4494. [10] 刘晓光,高兴宝. 一种具有非凸非光滑组合正则的图像恢复方法[J]. 科学技术与工程, 2018, 18(7):197-202. (LIU X G, GAO X B. One image restoration method with the combined non-convex non-smooth regularization[J]. Science Technology and Engineering, 2018, 18(7):197-202.) [11] ZHANG X J, XU C, LI M, et al. Sparse and low-rank coupling image segmentation model via nonconvex regularization[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2015, 29(2):No.1555004. [12] RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena, 1992, 60(1/2/3/4):259-268. [13] ZHANG J, CHEN K, YU B. An iterative Lagrange multiplier method for constrained total-variation-based image denoising[J]. SIAM Journal on Numerical Analysis, 2012, 50(3):983-1003. [14] XU Y P. A new algorithm for total variation based image denoising[J]. Acta Mathematicae Applicatae Sinica, English Series, 2012, 28(4):721-730. [15] WANG Y, YANG J, YIN W, et al. A new alternating minimization algorithm for total variation image reconstruction[J]. SIAM Journal on Imaging Sciences, 2008, 1(4):248-272. [16] 杨俊锋. 图像处理中全变差正则化数据拟合问题算法回顾[J]. 运筹学学报, 2017, 21(4):69-83. (YANG J F. An algorithmic review for total variation regularized data fitting problems in image processing[J]. Operations Research Transactions, 2017, 21(4):69-83.) [17] LIU Y L, DU H, WANG Z, et al. Convex MR brain image reconstruction via non-convex total variation minimization[J]. International Journal of Imaging Systems and Technology, 2018, 28(4):246-253. [18] BARBERO Á, SRA S. Modular proximal optimization for multidimensional total-variation regularization[J]. The Journal of Machine Learning Research, 2018, 19(1):2232-2313. [19] FESSLER J A. Optimization methods for magnetic resonance image reconstruction:key models and optimization algorithms[J]. IEEE Signal Processing Magazine, 2020, 37(1):33-40. [20] ZHANG Z, XU Y, YANG J, et al. A survey of sparse representation:algorithms and applications[J]. IEEE Access, 2015, 3:490-530. [21] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1):1-122. [22] ZOU J, SHEN M, ZHANG Y, et al. Total variation denoising with non-convex regularizers[J]. IEEE Access, 2019, 7:4422-4431. [23] 王斌,胡辽林,曹京京,等. 基于Moreau包络平滑l1/全变差范数模型的图像脉冲噪声去除方法[J]. 光学学报, 2014, 34(12):No.1211002. (WANG B, HU L L, CAO J J,et al. Impulse noise removal method based on Moreau envelope smoothing l1/TV norm model[J]. Acta Optica Sinica, 2014, 34(12):No.1211002.) [24] LANZA A, MORIGI S, SGALLARI F. Convex image denoising via non-convex regularization with parameter selection[J]. Journal of Mathematical Imaging and Vision, 2016, 56(2):195-220. |