[1] BALLARD C,GAUTHIER S,CORBETT A,et al. Alzheimer's disease[J]. The Lancet,2011,377(9770):1019-1031. [2] Alzheimer's Association. 2014 Alzheimer's disease facts and figures[J]. Alzheimer's and Dementia,2010,10(4):e47-e92. [3] BORRONI B, ANCHISI D, PAGHERA B, et al. Combined 99mTc-ECD SPECT and neuropsychological studies in MCI for the assessment of conversion to AD[J]. Neurobiology of Aging,2006, 27(1):24-31. [4] DAVATZIKOS C. Baseline and longitudinal patterns of brain atrophy in MCI patients and their use in prediction of short-term conversion to Alzheimer's disease:results from ADNI[J]. Alzheimer's and Dementia,2009,5(S4):P21-P22. [5] GRUNDMAN M,PETERSON R C,FERRIS S H,et al. Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials[J]. Archives of Neurology, 2004,61(1):59-66. [6] BISCHKOPF J,BUSSE A,ANGERMEYER M C. Mild cognitive impairment-a review of prevalence,incidence and outcome according to current approaches[J]. Acta Psychiatrica Scandinavica,2002,106(6):403-414. [7] PANNUNZI M,HINDRIKS R,BETTINARDI R G,et al. Restingstate fMRI correlations:from link-wise unreliability to whole brain stability[J]. NeuroImage,2017,157:250-262. [8] WANG S,ZHAN Y,ZHANG Y,et al. Abnormal long-and shortrange functional connectivity in adolescent-onset schizophrenia patients:a resting-state fMRI study[J]. Progress in NeuroPsychopharmacology and Biological Psychiatry, 2018, 81:445-451. [9] ZHANG W, LIU X, ZHANG Y, et al. Disrupted functional connectivity of the hippocampus in patients with hyperthyroidism:Evidence from resting-state fMRI[J]. European Journal of Radiology,2014,83(10):1907-1913. [10] DAMARAJU E,ALLEN E A,BELGER A,et al. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia[J]. NeuroImage:Clinical, 2014,5:298-308. [11] CANAL M R. Comparison of wavelet and short time Fourier transform methods in the analysis of EMG signals[J]. Journal of Medical Systems,2010,34(1):91-94. [12] CALVIN W H,SYPERT G W. Fast and slow pyramidal tract neurons:an intracellular analysis of their contrasting repetitive firing properties in the cat[J]. Journal of Neurophysiology,1976, 39(2):420-434. [13] UR REHMAN N, MANDIC D P. Filter bank property of multivariate empirical mode decomposition[J]. IEEE Transactions on Signal Processing,2011,59(5):2421-2426. [14] RUSSAKOVSKY O,DENG J,SU H,et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision,2015,115(3):211-252. [15] SUK H I,WEE C Y,LEE S W,et al. State-space model with deep learning for functional dynamics estimation in resting-state fMRI[J]. NeuroImage,2016,129:292-307. [16] 翁春娇, 李文娟, 姚紫云, 等. 颈椎病慢性颈肩痛患者脑功能网络研究[J]. 磁共振成像,2020,11(7):511-517.(WEN C J,LI W J,YAO Z Y,et al. A research of the resting state network in patients with chronic neck and shoulder pain of cervical spondylosis[J]. Chinese Journal of Magnetic Resonance Imaging, 2020,11(7):511-517.) [17] 余仁萍, 余海飞, 万红. 基于静息态功能磁共振成像的精神分裂症脑网络特征分类研究[J]. 生物医学工程学杂志,2020,37(4):661-669.(YU R P,YU H F,WAN H. Research on brain network for schizophrenia classification based on resting-state functional magnetic resonance imaging[J]. Journal of Biomedical Engineering,2020,37(4):661-669.) [18] JU R,HU C,ZHOU P,et al. Early diagnosis of Alzheimer's disease based on resting-state brain networks and deep learning[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics,2019,16(1):244-257. [19] KAM T E,ZHANG H,JIAO Z,et al. Deep learning of static and dynamic brain functional networks for early MCI detection[J]. IEEE Transactions on Medical Imaging,2020,39(2):478-487. [20] YAN W,ZHANG H,SUI J,et al. Deep chronnectome learning via full bidirectional long short-term memory networks for MCI diagnosis[C]//Proceedings of the 2018 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 11072. Cham:Springer,2018:249-257. [21] FARAHMAND S, SOBAYO T, MOGUL D J. Noise-assisted multivariate EMD-based mean-phase coherence analysis to evaluate phase-synchrony dynamics in epilepsy patients[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018,26(12):2270-2279. [22] YAN C,WANG X,ZUO X,et al. DPABI:data processing & analysis for(resting-state)brain imaging[J]. Neuroinformatics, 2016,14(3):339-351. [23] TZOURIO-MAZOYER N, LANDEAU B, PAPATHANASSIOU D,et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. NeuroImage,2002,15(1):273-289. [24] HOWARD A G,ZHU M,CHEN B,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2020-04-22]. https://arxiv.org/pdf/1704.04861.pdf. |