[1] 周继来,周明全,耿国华,等. 基于曲度特征的三维模型检索算法[J]. 计算机应用, 2016, 36(7):1914-1917, 1922. (ZHOU J L, ZHOU M Q, GENG G H, et al. 3D model retrieval algorithm based on curvedness feature[J]. Journal of Computer Applications, 2016, 36(7):1914-1917, 1922.) [2] 朱俊鹏,赵洪利,杨海涛. 基于卷积神经网络的视差图生成技术[J]. 计算机应用, 2018, 38(1):255-259, 289. (ZHU J P, ZHAO H L, YANG H T. Disparity map generation technology based on convolutional neural network[J]. Journal of Computer Applications, 2018, 38(1):255-259, 289.) [3] CHANG A X, FUNKHOUSER T, GUIBAS L, et al. ShapeNet:an information-rich 3D model repository[EB/OL].[2019-11-21].https://arxiv.org/pdf/1512.03012.pdf. [4] DENG X, SONG P, RODRIGUES M R D. RADAR:robust algorithm for depth image super resolution based on FRI theory and multimodal dictionary learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019(Early Access):1-1. [5] DREWS P L J, NASCIMENTO E R, BOTELHO S S C, et al. Underwater depth estimation and image restoration based on single images[J]. IEEE Computer Graphics and Applications, 2016, 36(2):24-35. [6] 陈加,张玉麒,宋鹏,等. 深度学习在基于单幅图像的物体三维重建中的应用[J]. 自动化学报, 2019, 45(4):657-668. (CHEN J, ZHANG Y Q, SONG P, et al. Application of deep learning in 3D object reconstruction based on single image[J]. Acta Automatica Sinica, 2019, 45(4):657-668.) [7] TULSIANI S, ZHOU T, EFROS A, et al. Multi-view supervision for single-view reconstruction via differentiable ray consistency[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2019(Early Access):1-1. [8] GROUEIX T, FISHER M, KIM V G, et al. AltasNet:a Papier-Mâché approach to learning 3D surface generation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:216-224. [9] HENDERSON P, FERRARI V. Learning single-image 3D reconstruction by generative modelling of shape, pose and shading[J]. International Journal of Computer Vision, 2020, 128(4):835-854. [10] KATO H, HARADA T. Learning view priors for single-view 3D reconstruction[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:9770-9779. [11] WU J, WANG Y, XUE T, et al. MarrNet:3D shape reconstruction via 2.5D sketches[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook:Curran Associates Inc., 2017:540-550. [12] 李伟,张旭东. 基于卷积神经网络的深度图像超分辨率重建方法[J].电子测量与仪器学报, 2017, 31(12):1918-1928. (LI W, ZHANG X D. Depth image super-resolution reconstruction based on convolutional neural network[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(12):1918-1928) [13] CHEN Y, SHI F, CHRISTODOULOU A G, et al. Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network[C]//Proceedings of the 2018 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 11070. Cham:Springer, 2018:91-99. [14] ZHANG K, SUN M, HAN T X, et al. Residual networks of residual networks:multilevel residual networks[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(6):1303-1314. [15] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham:Springer, 2015:234-241. [16] XIA Y, XIAO J, WANG Y. A fast registration algorithm of rock point cloud based on spherical projection and feature extraction[J]. Frontiers of Computer Science, 2019, 13(1):170-182. [17] RAN L, ZHANG Y, ZHANG Q, et al. Convolutional neural network-based robot navigation using uncalibrated spherical images[J]. Sensors, 2017, 17(6):No.1341. [18] GORBACHEV V A, OSOKIN I V. Detection and removal of foreground objects in spherical images for the synthesis of photorealistic intermediate images[J]. Pattern Recognition and Image Analysis, 2019, 29(3):471-485. [19] BASHMAL L, BAZI Y, ALHICHRI H, et al. Siamese-GAN:learning invariant representations for aerial vehicle image categorization[J]. Remote Sensing, 2018, 10(3):No.351. [20] CUI Z, ZHANG M, CAO Z, et al. Image data augmentation for SAR sensor via generative adversarial nets[J]. IEEE Access, 2019, 7:42255-42268. [21] 曹仰杰,贾丽丽,陈永霞,等. 生成式对抗网络及其计算机视觉应用研究综述[J]. 中国图象图形学报, 2018, 23(10):1433-1449. (CAO Y J, JIA L L, CHEN Y X, et al. Review of computer vision based on generative adversarial networks[J]. Journal of Image and Graphics, 2018, 23(10):1433-1449.) |