[1] 张海楠,伍大勇,刘悦,等. 基于深度神经网络的中文命名实体识别[J]. 中文信息学报, 2017, 31(4):28-35. ZHANG H N, WU D Y, LIU Y, et al. Chinese Named Entity Recognition based on deep neural network[J]. Journal of Chinese Information Processing, 2017, 31(4):28-35. [2] BIKEL D M, SCHWARTZ R, WEISCHEDEL R M. An algorithm that learns what's in a name[J]. Machine Learning, 1999, 34(1/2/3):211-231. [3] 张玥杰,徐智婷,薛向阳. 融合多特征的最大熵汉语命名实体识别模型[J]. 计算机研究与发展, 2008, 45(6):1004-1010. (ZHANG Y J, XU Z T, XUE X Y. Fusion of multiple features for Chinese named entity recognition based on maximum entropy model[J]. Journal of Computer Research and Development, 2008, 45(6):1004-1010.) [4] ARTALEJO J R, LOPEZ-HERRERO M J. The SIS and SIR stochastic epidemic models:a maximum entropy approach[J]. Theoretical Population Biology, 2011, 80(4):256-264. [5] SONG S, ZHANG N, HUANG H. Named entity recognition based on conditional random fields[J]. Cluster Computing, 2019, 22(S3):5195-5206. [6] LU J, YE M, TANG Z, et al. A novel method for Chinese named entity recognition based on character vector[C]//Proceedings of the 11th International Conference on Collaborative Computing:Networking, Applications and Worksharing, LNICST 163. Cham:Springer, 2015:141-150. [7] DONG C, ZHANG J, ZONG C, et al. Character-based LSTMCRF with radical-level features for Chinese named entity recognition[C]//Proceedings of the 5th CCF Conference on Natural Language Processing and Chinese Computing, and 24th International Conference on Computer Processing of Oriental Languages, LNCS 10102. Cham:Springer, 2016:239-250. [8] 王博冉,林夏,朱晓东,等. Lattice LSTM神经网络法中文医学文本命名实体识别模型研究[J]. 中国卫生信息管理杂志, 2019, 16(1):84-88. (WANG B R, LIN X, ZHU X D, et al. Chinese Name language Entity Recognition (NER) using lattice LSTM in medical language[J]. Chinese Journal of Health Information Management, 2019, 16(1):84-88.) [9] 柏兵,侯霞,石松. 基于CRF和BI-LSTM的命名实体识别方法[J]. 北京信息科技大学学报, 2018, 33(6):27-33. (BAI B, HOU X, SHI S. Named entity recognition method based on CRF and BI-LSTM[J]. Journal of Beijing University of Information Technology, 2018, 33(6):27-33.) [10] 李明扬,孔芳. 融入自注意力机制的社交媒体命名实体识别[J]. 清华大学学报(自然科学版), 2019, 59(6):461-467. (LI M Y, KONG F. Combined self-attention mechanism for named entity recognition in social media[J]. Journal of Tsinghua University (Natural Science Edition), 2019, 59(6):461-467.) [11] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st Conference on Neural Information and Processing Systems. Red Hook, NY:Curran Associates Inc., 2017:6000-6010. [12] ZHENG S, WANG F, BAO H, et al. Joint extraction of entities and relations based on a novel tagging scheme[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2017:1227-1236. [13] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL].[2019-11-12].https://arxiv.org/pdf/1301.3781.pdf. [14] JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2017:427-431. [15] PENNINGTON J, SOCHER R, MANNING C. Glove:global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2014:1532-1543. [16] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [17] JOZEFOWICZ R, ZAREMBA W, SUTSKEVER I. An empirical exploration of recurrent network architectures[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. New York:JMLR.org, 2015:2342-2350. [18] GORMLEY M R, YU M, DREDZE M. Improved relation extraction with feature-rich compositional embedding models[C]//Proceedings of the 2015 Conference on Empirical Method in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2015:1774-1784. [19] TANG J, QU M, WANG M, et al. LINE:large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web. Republic and Canton of Geneva:International World Wide Web Conferences Steering Committee, 2015:1067-1077. [20] HOFFMANN R, ZHANG C, LING X, et al. Knowledge-based weak supervision for information extraction of overlapping relations[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA:Association for Computational Linguistics, 2011:541-550. [21] LI Q, JI H. Incremental joint extraction of entity mentions and relations[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2014:402-412. |