计算机应用 ›› 2020, Vol. 40 ›› Issue (9): 2677-2682.DOI: 10.11772/j.issn.1001-9081.2020010087

• 先进计算 • 上一篇    下一篇

融合头脑风暴思想的教与学优化算法

李丽荣1, 杨坤2,3, 王培崇2,3   

  1. 1. 河北地质大学 艺术设计学院, 石家庄 050031;
    2. 河北地质大学 信息工程学院, 石家庄 050031;
    3. 河北地质大学 人工智能与机器学习研究室, 石家庄 050031
  • 收稿日期:2020-02-13 修回日期:2020-04-01 出版日期:2020-09-10 发布日期:2020-04-09
  • 通讯作者: 王培崇
  • 作者简介:李丽荣(1973-),女,河北张家口人,助理研究员,硕士,主要研究方向:智能决策;杨坤(1997-),女,四川成都人,硕士研究生,主要研究方向:信息安全;王培崇(1972-),男,河北辛集人,教授,博士,主要研究方向:信息安全、计算机视觉。
  • 基金资助:
    河北省社会科学基金资助项目(HB19GL0074);河北省高等学校科研项目(ZD2018043,ZD2020344)。

Improved teaching & learning based optimization with brain storming

LI Lirong1, YANG Kun2,3, WANG Peichong2,3   

  1. 1. School of Art and Design, Hebei GEO University, Shijiazhuang Hebei 050031, China;
    2. School of Information Engineering, Hebei GEO University, Shijiazhuang Hebei 050031, China;
    3. Laboratory of AI and Machine Learning, Hebei GEO University, Shijiazhuang Hebei 050031, China
  • Received:2020-02-13 Revised:2020-04-01 Online:2020-09-10 Published:2020-04-09
  • Supported by:
    This work is partially supported by the Social Science Foundation of Hebei Province (HB19GL0074), the Scientific Research Project for Colleges and Universities in Hebei Province (ZD2018043, ZD2020344).

摘要: 针对教与学优化(TLBO)算法在求解高维问题时表现出的收敛速度慢、解精度低、易陷入于局部最优的问题,提出了一种融合头脑风暴思想的改进教与学优化算法(ITLBOBSO)。在该算法中设计了一种新的“学”算子,并以其替换TLBO算法中的“学”。该算法在种群的迭代过程中,当前个体首先执行“教”算子。随后,在种群中随机选择两个个体,令其中优秀的个体与当前个体执行头脑风暴式学习,提升当前个体的状态。为了赋予算法早期良好的探索能力和后期对新解的开发能力,在该算子的公式中引入柯西变异和一个与迭代次数关联的随机参数。进行的一系列的仿真实验表明,与TLBO算法相比,所提算法在11个Benchmark函数上的解精度、鲁棒性和收敛速度都有大幅度提升。在2个约束工程优化问题上,ITLBOBSO所求得的耗费成本比TLBO算法降低了4个百分点。由此验证了所提出的机制对克服TLBO弱点的有效性,所提算法适合用来求解较高维度的连续优化问题。

关键词: 教与学优化, 头脑风暴, 柯西变异, “学”算子, 约束工程优化问题

Abstract: Concerning the problems that Teaching & Learning Based Optimization (TLBO) algorithm has slow convergence rate and low accuracy, and it is easy to be trapped into local optimum in solving high-dimensional problems, an Improved TLBO algorithm with Brain Storming Optimization (ITLBOBSO) was proposed. In this algorithm, a new “learning”operator was designed and applied to replace the origin “learning” in the TLBO. In the iteration process of the population, the “teaching” operator was executed by the current individual. Then, two individuals were selected randomly from the population, and brain storming learning was executed by the better one of the above and the current individual to improve the state of the current individual. Cauchy mutation and a random parameter associated with the iterations were introduced in the formula of this operator to improve the exploration ability in early stage and the exploitation ability for new solutions in later stage of the algorithm. In a series of simulation experimentations, compared with TLBO, the proposed algorithm has large improvements of solution accuracy, robustness and convergence speed on 11 benchmark functions. The experimental results on two constrained engineering optimization problems show that compared to TLBO algorithm, ITLBOBSO reduces the total cost by 4 percentage points, which proves the effectiveness of the proposed mechanism on overcoming the weakness of TLBO algorithm. The proposed algorithm is suitable for solving high dimensional continuous optimization problems.

Key words: Teaching & Learning Based Optimization (TLBO), brain storming, Cauchy mutation, "learning" operator, constrained engineering optimization problem

中图分类号: