[1] 刘虎, 周野, 袁家斌. 基于多尺度双线性卷积神经网络的多角度下车型精细识别[J]. 计算机应用,2019,39(8):2402-2407. (LIU H,ZHOU Y,YUAN J B. Fine-grained vehicle recognition under multiple angles based on multi-scale bilinear convolutional neural network[J]. Journal of Computer Applications,2019,39(8):2402-2407.) [2] 吴峰华, 杨哲海, 张玉萍, 等. 仿人足球机器人快速多目标识别方法[J]. 计算机辅助设计与图形学学报,2019,31(12):2152-2165.(WU F H,YANG Z H,ZHANG Y P,et al. Fast multi-target recognition method for humanoid robot playing soccer[J]. Journal of Computer-Aided Design and Computer Graphics,2019,31(12):2152-2165.) [3] CAO J,CHEN L,WANG M,et al. A parallel AdaBoost-backpropagation neural network for massive image dataset classification[J]. Scientific Reports,2016,6:No. 38201. [4] 徐守坤, 邱亮, 李宁, 等. 基于HOG-CSLBP及YOLOv2的行人检测[J]. 计算机工程与设计,2019,40(10):2964-2968.(XU S K,QIU L,LI N,et al. Pedestrian detection based on HOG-CSLBP and YOLOv2[J]. Computer Engineering and Design,2019,40(10):2964-2968.) [5] 赵越, 吴莹. 自适应PSO-SVM上产期油气操作成本预测模型[J]. 计算机仿真,2019,36(11):69-74.(ZHAO Y,WU Y. Selfadaption PSO-SVM oil-gas operating cost in the rapid growing period forecasting model[J]. Computer Simulation, 2019, 36(11):69-74.) [6] ZHAO S,CHEN L. Hoisting equipment of coal mine condition monitoring and early warning based on BP neural network[J].Advanced Science Letters,2012,5(1):590-592. [7] CHEN L,PAN L,YANG C. Using APPM-trained ANN to solve stochastic expected value mode[J]. International Journal of BioInspired Computation,2013,5(3):192-196. [8] 李洪均, 周泽. 分层式宽度模型的实时车型识别算法[J]. 数据采集与处理,2019,34(1):80-90.(LI H J,ZHOU Z. Real-time vehicle type recognition algorithm based on layered broad model[J]. Journal of Data Acquisition and Processing,2019,34(1):80-90.) [9] 邓棋, 雷印杰, 田锋. 用于肺炎图像分类的优化卷积神经网络方法[J]. 计算机应用,2020,40(1):71-76.(DENG Q,LEI Y J, TIAN F. Optimized convolutional neural network method for classification of pneumonia images[J]. Journal of Computer Applications,2020,40(1):71-76.) [10] 徐姗姗, 颜超, 高琳明. 基于三维卷积神经网络的湖泊提取算法[J]. 计算机应用,2019,39(12):3450-3455.(XU S S,YAN C, GAO L M. Lake extraction algorithm based on three-dimensional convolutional neural network[J]. Journal of Computer Applications,2019,39(12):3450-3455.) [11] 张文彬, 朱敏, 张宁, 等. 基于卷积神经网络的偏色光下植物图像分割方法[J]. 计算机应用,2019,39(12):3665-3672. (ZHANG W B, ZHU M, ZHANG N, et al. Plant image segmentation method under bias light based on convolutional neural network[J]. Journal of Computer Applications,2019,39(12):3665-3672.) [12] ZHEN D,WU Y,PEI M,et al. Vehicle type classification using a semisupervised convolutional neural network[J]. IEEE Transactions on Intelligent Transportation Systems,2015,16(4):2247-2256. [13] 桑军, 郭沛, 项志立, 等. Faster-RCNN的车型识别分析[J]. 重庆大学学报,2017,40(7):32-36.(SANG J,GUO P,XIANG Z L,et al. Vehicle detection based on Faster-RCNN[J]. Journal of Chongqing University,2017,40(7):32-36.) [14] SABOUR S,FROSST N,HINTON G E. Dynamic routing between capsules[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:3859-3869. [15] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2005:886-893. [16] 舒娜, 刘波, 林伟伟, 等. 分布式机器学习平台与算法综述[J]. 计算机科学,2019,46(3):9-18.(SHU N,LIU B,LIN W W, et al. Survey of distributed machine learning platforms and algorithms[J]. Computer Science,2019,46(3):9-18.) [17] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-04-10]. https://arxiv.org/pdf/1409.1556.pdf. [18] 袁公萍, 汤一平, 韩旺明, 等. 基于深度卷积神经网络的车型识别方法[J]. 浙江大学学报(工学版),2018,52(4):694-702. (YUAN G P,TANG Y P,HAN W M,et al. Vehicle category recognition based on deep convolutional neural network[J]. Journal of Zhejiang University(Engineering Science),2018,52(4):694-702.) |