[1] DOWNEY C L,SIMPKINS S A,WHITE J,et al. The prognostic significance of tumour-stroma ratio in oestrogen receptor-positive breast cancer[J]. British Journal of Cancer,2014,110(7):1744-1747. [2] DONGRE A,WEINBERG R A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer[J]. Nature Reviews Molecular Cell Biology,2019,20(2):69-84. [3] ALI S,LEWIS J,MADABHUSHI A. Spatially Aware Cell Cluster (SpACCl) graphs:predicting outcome in oropharyngeal p16+ tumors[C]//Proceedings of the 2013 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 8149. Berlin:Springer,2013:412-419. [4] EVGENIOU T,PONTIL M. Support vector machines:theory and applications[C]//Proceedings of the 1999 Advanced Course on Artificial Intelligence, LNCS 2049. Berlin:Springer, 1999:249-257. [5] HIARY H, ALOMARI R S, SAADAH M, et al. Automated segmentation of stromal tissue in histology images using a voting Bayesian model[J]. Signal,Image and Video Processing,2013,7(6):1229-1237. [6] ERAMIAN M,DALEY M,NEILSON D,et al. Segmentation of epithelium in H&E stained odontogenic cysts[J]. Journal of Microscopy,2011,244(3):273-292. [7] OJALA T,PIETIKAINEN M,MAENPAA T. Multiresolution grayscale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987. [8] 骆小飞, 徐军, 陈佳梅. 基于逐像素点深度卷积网络分割模型的上皮和间质组织分割[J]. 自动化学报,2017,43(11):2003-2013.(LUO X F,XU J,CHEN J M. A deep convolutional network for pixel-wise segmentation on epithelial and stromal tissues in histologic images[J]. Acta Automatica Sinica,2017,43(11):2003-2013.) [9] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2012:1097-1105. [10] Al-MILAJI Z, ERSOY I, HAFIANE A, et al. Integrating segmentation with deep learning for enhanced classification of epithelial and stromal tissues in H&E images[J]. Pattern Recognition Letters,2019,119:214-221. [11] XU J,LUO X,WANG G,et al. A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images[J]. Neurocomputing,2016, 191:214-223. [12] LONG J,SHELHAMER E,DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:3431-3440. [13] BULTEN W, BÁNDI P, HOVEN J, et al. Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard[J]. Scientific Reports,2019,9(1):No. 864. [14] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2005:886-893. [15] RUIFROK A C,JOHNSTON D A. Quantification of histochemical staining by color deconvolution[J]. Analytical and Quantitative Cytology and Histology,2001,23(4):291-299. [16] RONNEBERGER O, FISCHER P, BROX T. U-net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham:Springer,2015:234-241. [17] VU Q D,KWAK J T. A dense multi-path decoder for tissue segmentation in histopathology images[J]. Computer Methods and Programs in Biomedicine,2019,173:119-129. [18] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-04-10]. https://arxiv.org/pdf/1409.1556.pdf. [19] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [20] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:2672-2680. [21] MIRZA M,OSINDERO S. Conditional generative adversarial nets[EB/OL].[2019-11-06]. https://arxiv.org/pdf/1411.1784.pdf. [22] ISOLA P,ZHU J,ZHOU T,et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:5967-5976. [23] BADRINARAYANAN V,KENDALL A,CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [24] ZHOU Z,RAHMAN SIDDIQUEE M M,TAJBAKHSH N,et al. UNet++:a nested U-Net architecture for medical image segmentation[C]//Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis,LNCS 11045/8th International Workshop on Multimodal Learning for Clinical Decision Support,LNIP 11045. Cham:Springer,2018:3-11. [25] IOFFE S,SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[EB/OL].[2019-03-02]. https://arxiv.org/pdf/1502.03167.pdf. [26] WU Y,HE K. Group normalization[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11217. Cham:Springer,2018:3-19. [27] SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2016:2234-2242. [28] MOORE R C,DENERO J. L1 and L2 regularization for multiclass hinge loss models[C]//Proceedings of the 2011 Symposium on Machine Learning in Speech and Language Processing. Piscataway:IEEE,2011:1-5. [29] BECK A H,SANGOI A R,LEUNG S,et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival[J]. Science Translational Medicine,2011,3(108):(No. 108ra113.) [30] KINGMA D P, BA J L. Adam:a method for stochastic optimization[EB/OL].[2019-01-30]. https://arxiv.org/pdf/1412.6980.pdf. [31] GARCIA-GARCIA A,ORTS-ESCOLANO S,OPREA S O,et al. A review on deep learning techniques applied to semantic segmentation[EB/OL].[2019-04-22]. https://arxiv.org/pdf/1704.06857.pdf. |