[1] WAN G,MAUNG C,SCHWEITZER H. Improving the accuracy of principalcomponent analysis by the maximum entropy method[EB/OL].[2019-12-19]. https://arxiv.org/pdf/1907.11094.pdf. [2] BOUWMANS T, ZAHZAH E. Robust PCA via principalcomponent pursuit:a review for acomparative evaluation in video surveillance[J]. Computer Vision and Image Understanding, 2014,122:22-34. [3] 陈利霞, 刘俊丽, 王学文. 结合加权Schatten-p范数与3D全变分的前景检测[J]. 计算机应用,2019,39(4):1170-1175. (CHEN L X, LIU J L, WANG X W. Foreground detectioncombining weighted Schatten-p norm with 3D total variation[J]. Journal of Computer Applications,2019,39(4):1170-1175.) [4] 宣晓, 余勤. 基于截断核范数的视频前景与背景分离[J]. 计算机工程与设计,2018,39(5):1415-1421.(XUAN X,YU Q. Video foreground-background separation based on truncated nuclear norm[J]. Computer Engineering and Design,2018,39(5):1415-1421.) [5] WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2):210-227. [6] JAVED S,MAHMOOD A,Al-MAADEED S,et al. Moving object detection incomplex scene using spatiotemporal structured-sparse RPCA[J]. IEEE Transactions on Image Processing,2019,28(2):1007-1022. [7] CANDÈS E J,LI X,MA Y,et al. Robust principalcomponent analysis[J]. Journal of the ACM,2011,58(3):No. 11. [8] GILLIS N,VAVASIS S A. On thecomplexity of robust PCA and l1-norm low-rank matrix approximation[J]. Mathematics of Operations Research,2018,43(4):1072-1084. [9] LIN Z,CHEN M,MA Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[EB/OL].[2019-12-19]. https://arxiv.org/pdf/1009.5055.pdf. [10] SHEN Y,WEN Z,ZHANG Y. Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization[J]. Optimization Methods and Software,2014,29(2):239-263. [11] YI X,PARK D,CHEN Y,et al. Fast algorithms for robust PCA via gradient descent[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2016:4159-4167. [12] LU C, FENG J, CHEN Y, et al. Tensor robust principalcomponent analysis with a new tensor nuclear norm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020, 42(4):925-938. [13] CHEREAU J P,DEES B S,MANDIC D P. Robust principalcomponent analysis based on maximum correntropy power iterations[EB/OL].[2019-12-19]. https://arxiv.org/pdf/1910.11374.pdf. [14] WOLD S, ESBENSEN K, GELADI P. Principalcomponent analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987,2(1/2/3):37-52. [15] BIOUCAS-DIAS J M,FIGUEIREDO M A T. A new TwIST:twostep iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing,2007,16(12):2992-3004. [16] MA S,AYBAT N S. Efficient optimization algorithms for robust principalcomponent analysis and its variants[J]. Proceedings of the IEEE,2018,106(8):1411-1426. [17] VASWANI N, BOUWMANS T, JAVED S, et al. Robust subspace learning:robust PCA,robust subspace tracking,and robust subspace recovery[J]. IEEE Signal Processing Magazine, 2018,35(4):32-55. |