[1] ZAYAS I, POMERANZ, LAI F S Y. Discrimination between Arthur and Arkan wheats by image-analysis[J]. Cereal Chemistry, 1985,62(6):478-480. [2] THOMSON W H,POMERANZ Y. Classification of wheat kernels using three-dimensional image-analysis[J]. Cereal Chemistry, 1991,68(4):357-361. [3] MAJUMDAR S,JAYAS D S. Classification of bulk samples of cereal grains using machine vision[J]. Journal of Agricultural Engineering Research,1999,73(1):35-47. [4] NEETHIRAJAN S,JAYAS D S,WHITE N D G. Detection of sprouted wheat kernels using soft X-ray image analysis[J]. Journal of Food Engineering,2007,81(3):509-513. [5] 陈丰农. 基于机器视觉的小麦并肩杂与不完善粒动态实时检测研究[D]. 杭州:浙江大学,2012:51-89.(CHEN F N. Real-time detection of kernel-like impurity and unsound kernel in wheat using machine vision[D]. Hangzhou:Zhejiang University, 2012:51-89.) [6] 曹婷翠, 何小海, 董德良, 等. 基于CNN深度模型的小麦不完善粒识别[J]. 现代计算机(专业版),2017(36):9-14.(CAO T C, HE X H,DONG D L,et al. Identification of unsound kernels in wheat based on CNN deep model[J]. Modern Computer,2017(36):9-14.) [7] 陈文根. 基于深度学习的小麦图谱特征技术研究[D]. 郑州:河南工业大学,2018:47-55.(CHEN W G. Wheat map features research based on deep learning[D]. Zhengzhou:Henan University of Technology,2018:47-55.) [8] 张博. 基于深度学习的小麦外观品质机器视觉检测研究[D]. 杨凌:西北农林科技大学,2019:21-47.(ZHANG B. Machine vision inspection of wheat appearance quality based on deep learning[D]. Yangling:Northwest A&F University,2019:21-47.) [9] 祝诗平, 卓佳鑫, 黄华, 等. 基于CNN的小麦籽粒完整性图像检测系统[J/OL]. 农业机械学报.[2020-03-07]. http://kns.cnki.net/kcms/detail/11.1964.S.20200304.1947.012.html. (ZHU S P,ZHUO J X,HUANG H,et al. Wheat grain integrity image detection system based on CNN[J/OL]. Transactions of The Chinese Society of Agricultural Machinery.[2020-03-07]. http://kns.cnki.net/kcms/detail/11.1964.S.20200304.1947.012.html.) [10] XU L,LU C,XU Y,et al. Image smoothing via L0 gradient minimization[J]. ACM Transactions on Graphics,2011,30(6):No. 174. [11] WIESLER S, RICHARD A, SCHLÜTER R, et al. Meannormalized stochastic gradient for large-scale deep learning[C]//Proceedings of the 2014 IEEE International Conference on Acoustics,Speech and Signal Processing. Piscataway:IEEE, 2014:180-184. [12] LOFFE S,SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. New York:JMLR. org,2015:448-456. [13] 王迪, 石嵩, 许勇, 等. 深度神经网络的归一化算法探究[C]//中国计算机学会第二十二届计算机工程与工艺年会暨第八届微处理器技术论坛论文集. 长沙:中南大学出版社,2018:170-179.(WANG D,SHI S,XU Y,et al. Research on normalization algorithm of deep neural network[C]//Proceedings of the CCF 22nd Annual Conference of Computer Engineering and Technology/the 8th Microprocessor Technology Forum. Changsha:Central South University Press,2018:170-179.) [14] 刘爽, 谭鑫, 刘成玉, 等. 高光谱数据处理算法的小麦赤霉病籽粒识别[J]. 光谱学与光谱分析,2019,39(11):3540-3546. (LIU S,TAN X,LIU C Y,et al. Recognition of fusarium head blight wheat grain based on hyperspectral data processing algorithm[J]. Spectroscopy and Spectral Analysis,2019,39(11):3540-3546.) [15] 刘欢, 王雅倩, 王晓明, 等. 基于近红外高光谱成像技术的小麦不完善粒检测方法研究[J]. 光谱学与光谱分析,2019,39(1):223-229.(LIU H,WANG Y Q,WANG X M,et al. Study on detection method of wheat unsound kernel based on nearinfrared hyperspectral imaging technology[J]. Spectroscopy and Spectral Analysis,2019,39(1):223-229.) [16] 关二旗, 崔贵金, 卞科, 等. 基于近红外光谱特征的赤霉病小麦籽粒SIMCA识别模型构建研究[J]. 中国粮油学报,2016,31(11):124-129.(GUAN E Q,CUI G J,BIAN K,et al. SIMCA identification model establishment of gibberellic disease wheat grain based on near infrared spectrum characteristics[J]. Journal of the Chinese Cereals and Oils Association,2016,31(11):124-129.) [17] 于重重, 周兰, 王鑫, 等. 基于CNN神经网络的小麦不完善粒高光谱检测[J]. 食品科学,2017,38(24):283-287.(YU C C, ZHOU L,WANG X,et al. Hyperspectral detection of unsound kernels of wheat based on convolutional neural network[J]. Food Science,2017,38(24):283-287.) [18] 张红涛, 毛罕平, 剧森, 等. 基于胚部区域特征的麦粒姿态自动识别[J]. 农业工程学报,2014,30(14):163-169.(ZHANG H T,MAO H P,JU S,et al. Automatic posture recognition of wheat kernels based on germ features[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(14):163-169.) [19] 张航, 姚传安, 蒋梦梦, 等. 基于高光谱图像技术的小麦种子分类识别研究[J]. 麦类作物学报,2019,39(1):96-104. (ZHANG H,YAO C A,JIANG M M,et al. Research on wheat seed classification and recognition based on hyperspectral imaging[J]. Journal of Triticeae Crops,2019,39(1):96-104.) [20] 陈赛赛. 小麦质量指标机器视觉技术研究[D]. 郑州:河南工业大学,2014:44-49.(CHEN S S. The research to discriminate wheat quality indicators using machine vision technology[D]. Zhengzhou:Henan University of Technology,2014:44-49.) [21] GONZALES R C,WOODS R E. Digital Image Processing[M]. London:Pearson,2009:176-182. [22] 张静, 金光日. 小波框架中改进的l0平滑算法的图像复原[J]. 计算机应用,2016,36(S2):149-151, 196.(ZHANG J,JIN G R. Image restoration study based on smoothed l0 algorithm in wavelet frame[J]. Journal of Computer Applications,2016,36(S2):149-151,196.) [23] LIU Y,MA X,LI X,et al. Two-stage image smoothing based on edge-patch histogram equalisation and patch decomposition[J]. IET Image Processing,2020,14(6):1132-1140. |