[1] COLLETTE Y, SIARRY P. Multiobjective Optimization:Principles and Case Studies[M]. Berlin:Springer, 2004:273-316. [2] SRINIVAS N, DEB K. Multiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation,1994,2(3):221-248. [3] SCHAFFER J D. Multiple objective optimization with vector evaluated genetic algorithms[C]//Proceedings of the 1st International Conference on Genetic Algorithms. Mahwah, NJ:Lawrence Erlbaum Associates,Inc.,1985:93-100. [4] HORN J,NAFPLIOTIS N,GOLDBERG D E. A niched Pareto genetic algorithm for multiobjective optimization[C]//Proceedings of the 1st IEEE Conference on Evolutionary Computation/1994 IEEE World Congress on Computational Intelligence. Piscataway:IEEE,1994:82-87. [5] ZITZLER E,THIELE L. Multiobjective evolutionary algorithms:a comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation,1999,3(4):257-271. [6] ZITZLER E,LAUMANNS M,THIELE L. SPEA2:improving the strength Pareto evolutionary algorithm[C]//Proceedings of EUROGEN 2011-Evolutionary and Deterministic Methods for Design,Optimization and Control with Applications to Industrial and Societal Problems. Athens:[s. n.],2001:95-100. [7] DEB K,PRATAP A,AGARWAL S,et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197. [8] CAI X,SUN H,FAN Z. A diversity indicator based on reference vectors for many-objective optimization[J]. Information Sciences, 2018,430/431:467-486. [9] DEB K,JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach,part I:solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation,2014,18(4):577-601. [10] 袁源. 基于分解的多目标进化算法及其应用[D]. 北京:清华大学,2015:30-61. (YUAN Y. Decomposition-based multiobjective evolutionary algorithms and their applications[D]. Beijing:Tsinghua University,2015:30-61.) [11] 巩敦卫, 刘益萍, 孙晓燕, 等. 基于目标分解的高维多目标并行进化优化方法[J]. 自动化学报,2015,41(8):1438-1451. (GONG D W,LIU Y P,SUN X Y,et al. Parallel many-objective evolutionary optimization using objectives decomposition[J]. Acta Automatica Sinica,2015,41(8):1438-1451.) [12] BI X,WANG C. An improved NSGA-Ⅲ algorithm based on elimination operator for many-objective optimization[J]. Memetic Computing,2017,9(4):361-383. [13] BANDYOPADHYAY S,MUKHERJEE A. An algorithm for manyobjective optimization with reduced objective computations:a study in differential evolution[J]. IEEE Transactions on Evolutionary Computation,2015,19(3):400-413. [14] ZHANG X,TIAN Y,JIN Y. A knee point-driven evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation,2015,19(6):761-776. [15] ASAFUDDOULA M,RAY T,SARKER R A. A decompositionbased evolutionary algorithm for many objective optimization[J]. IEEE Transactions on Evolutionary Computation,2015,19(3):445-460. [16] LI Z, LIN K, NOUIOUA M, et al. DCDG-EA:dynamic convergence-diversity guided evolutionary algorithm for manyobjective optimization[J]. Expert Systems with Applications, 2019,118:35-51. [17] ZHANG Q, LI H. MOEA/D:a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation,2007,11(6):712-731. [18] HE Z, YEN G G. Many-objective evolutionary algorithm:objective space reduction and diversity improvement[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(1):145-160. [19] LIU H,GU F,ZHANG Q. Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems[J]. IEEE Transactions on Evolutionary Computation,2014,18(3):450-455. [20] LI H, ZHANG Q. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2):284-302. [21] LI K,DEB K,ZHANG Q,et al. An evolutionary many-objective optimization algorithm based on dominance and decomposition[J]. IEEE Transactions on Evolutionary Computation,2015,19(5):694-716. [22] CAI X,MEI Z,FAN Z. A decomposition-based many-objective evolutionary algorithm with two types of adjustments for direction vectors[J]. IEEE Transactions on Cybernetics,2018,48(8):2335-2348. [23] TRIVEDI A,SRINIVASAN D,SANYAL K,et al. A survey of multiobjective evolutionary algorithms based on decomposition[J]. IEEE Transactions on Evolutionary Computation,2017,21(3):440-462. [24] CHENG R,JIN Y,OLHOFER M,et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation,2016,20(5):773-791. [25] ZHOU A, QU B, LI H, et al. Multiobjective evolutionary algorithms:a survey of the state of the art[J]. Swarm and Evolutionary Computation,2011,1(1):32-49. [26] GIAGKIOZIS I, FLEMING P J. Methods for multi-objective optimization:an analysis[J]. Information Sciences,2015,293:338-350. [27] DAS I, DENNIS J E. Normal-boundary intersection:a new method for generating the Pareto surface in nonlinear multi-criteria optimization problems[J]. SIAM Journal on Optimization,1998,8(3):631-657. [28] ZITZLER E,DEB K,THIELE L. Comparison of multiobjective evolutionary algorithms:empirical results[J]. Evolutionary Computation,2000,8(2):173-195. [29] DEB K, THIELE L, LAUMANNS M, et al. Scalable test problems for evolutionary multi-objective optimization[M]//ABRAHAM A, JAIN L, GOLDBERG R. Evolutionary Multiobjective Optimization:Theoretical Advances and Applications. London:Springer,2005:105-145. [30] 郑金华, 邹娟. 多目标进化优化[M]. 北京:科学出版社, 2017:203-208. (ZHENG J H, ZOU J. Multi-objective evolutionary optimization[M]. Beijing:Science Press,2017:203-208.) [31] YANG S, LI M, LIU X, et al. A grid-based evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation,2013,17(5):721-736 [32] BOSMAN P A N,THIERENS D. The balance between proximity and diversity in multiobjective evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation,2003,7(2):174-188. [33] LI M, ZHENG J. Spread assessment for evolutionary multiobjective optimization[C]//Proceedings of the 2009 International Conference on Evolutionary Multi-Criterion Optimization,LNCS 5467. Berlin:Springer,2009:216-230. [34] WANG Z K,ZHANG Q F,LI H,et al. On the use of two reference points in decomposition based multiobjective evolutionary algorithms[J]. Swarm and Evolutionary Computation,2017,34:89-102. |