[1] HU W,TAN Y. Generating adversarial malware examples for blackbox attacks based on GAN[EB/OL].[2020-10-19]. https://arxiv.org/pdf/1702.05983.pdf. [2] 张景莲, 彭艳兵. 基于特征融合的恶意代码分类研究[J]. 计算机工程,2019,45(8):281-286,295.(ZHANG J L,PENG Y B. Research on malware code classification based on features fusion[J]. Computer Engineering,2019,45(8):281-286,295.) [3] 李翼宏, 刘方正, 杜镇宇. 一种改进主动学习的恶意代码检测算法[J]. 计算机科学,2019,46(5):92-99.(LI J H,LIU F Z,DU Z Y. Malware detection algorithm for improving active learning[J]. Computer Science,2019,46(5):92-99.) [4] SAXE J,BERLIN K. Deep neural network based malware detection using two dimensional binary program features[C]//Proceedings of the 10th International Conference on Malicious and Unwanted Software. Piscataway:IEEE,2015:11-20. [5] 傅依娴, 芦天亮, 马泽良. 基于One-Hot的CNN恶意代码检测技术[J]. 计算机应用与软件,2020,37(1):304-308,333.(FU Y X,LU T L,MA Z L. CNN malicious code detection technology based on One-Hot[J]. Computer Applications and Software,2020, 37(1):304-308,333.) [6] 韩晓光, 姚宣霞, 曲武, 等. 基于图像纹理聚类的恶意代码家族标注方法[J]. 解放军理工大学学报(自然科学版),2014,15(5):440-449.(HAN X G,YAO X X,QU W,et al. Malicious code family tagging based on image texture clustering technology[J]. Journal of PLA University of Science and Technology(Natural Science Edition),2014,15(5):440-449.) [7] 郎大鹏, 丁巍, 姜昊辰, 等. 基于多特征融合的恶意代码分类算法[J]. 计算机应用,2019,39(8):2333-2338.(LANG D P, DING W, JIANG H C, et al. Malicious code classification algorithm based on multi-feature fusion[J]. Journal of Computer Applications,2019,39(8):2333-2338.) [8] NATARAJ L,KARTHIKEYAN S,JACOB G,et al. Malware images:visualization and automatic classification[C]//Proceedings of the 8th International Symposium on Visualization for Cyber Security. New York:ACM,2011:No. 4. [9] YAN H,ZHOU H,ZHANG H. Automatic malware classification via PRICoLBP[J]. Chinese Journal of Electronics,2018,27(4):852-859. [10] 刘亚姝, 王志海, 严寒冰, 等. 抗混淆的恶意代码图像纹理特征描述方法[J]. 通信学报,2018,39(11):44-53.(LIU Y S, WANG Z H,YAN H B,et al. Method of anti-confusion texture feature descriptor for malware images[J]. Journal on Communications,2018,39(11):44-53.) [11] 季秀云. 基于内容的图像哈希检索算法研究[D]. 西安:西安电子科技大学,2014:3-5.(JI X Y. Research on hashing methods for content-based image retrieval[D]. Xi' an:Xidian University, 2014:3-5.) [12] CHEN L, LI Z, YANG J. Compressive perceptual hashing tracking[J]. Neurocomputing,2017,239:69-80. [13] OJALA T,PIETIKAINEN M,MAENPAA T. Multiresolution grayscale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987. [14] NATARAJ L,MANJUNATH B S. SPAM:signal processing to analyze malware[J]. IEEE Signal Processing Magazine,2016, 33(2):105-117. [15] Microsoft. Microsoft Malware Classification Challenge(BIG 2015)[DB/OL].[2020-09-04]. http://www.kaggle.com/c/malwareclassification. |