[1] ELISSEEFF A,WESTON J. A kernel method for multi-labelled classification[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2002:681-687. [2] FRNKRANZ J, HLLERMEIER E, MENCLA E. Multilabel classification via calibrated label ranking[J]. Machine Learning, 2008,73(2):133-153. [3] ZHOU T,TAO D,WU X. Compressed labeling on distilled label sets for multi-label learning[J]. Machine Learning,2012,88(1/2):69-126. [4] ZHU Y,KWOK J T,ZHOU Z. Multi-label learning with global and local label correlation[J]. IEEE Transactions on Knowledge and Data Engineering,2018,30(6):1081-1094. [5] HOU P,GENG X,ZHANG M. Multi-label manifold learning[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2016:1680-1686. [6] SUN Y,ZHANG Y,ZHOU Z. Multi-label learning with weak label[C]//Proceedings of the 24th AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2010:593-598. [7] 张敏灵. 一种新型多标记懒惰学习算法[J]. 计算机研究与发展,2012,49(11):2271-2282.(ZHANG M L. An improved multilabel lazy learning approach[J]. Journal of Computer Research and Development,2012,49(11):2271-2282.) [8] 孔祥南, 黎铭, 姜远, 等. 一种针对弱标记的直推式多标记分类方法[J]. 计算机研究与发展,2010,47(8):1392-1399.(KONG X N, LI M, JIANG Y, et al. A transductive multi-label classification method for weak labeling[J]. Journal of Computer Research and Development,2010,47(8):1392-1399.) [9] YU H F,JAIN P,KAR P,et al. Large-scale multi-label learning with missing labels[C]//Proceedings of the 31st International Conference on Machine Learning. New York:JMLR. org,2014:593-601. [10] NIE F,HUANG H,CAI X,et al. Efficient and robust feature selection via joint ℓ2, 1-norms minimization[C]//Proceedings of the 23rd International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2010:1813-1821. [11] ZHANG Y,ZHOU Z. Multilabel dimensionality reduction via dependence maximization[J]. ACM Transactions on Knowledge Discovery from Data,2010,4(3):No. 14. [12] ZHANG C,YU Z,FU H,et al. Hybrid noise-oriented multilabel learning[J]. IEEE Transactions on Cybernetics,2020,50(6):2837-2850. [13] WANG Y X,SHARPNACK J,SMOLA A J,et al. Trend filtering on graphs[J]. Journal of Machine Learning Research,2016,17:3651-3691. [14] ZHANG M, ZHOU Z H. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering,2014,26(8):1819-1837. [15] BOUTELL M R,LUO J,SHEN X,et al. Learning multi-label scene classification[J]. Pattern Recognition,2004,37(9):1757-1771. [16] READ J,PFAHRINGER B,HOLMES G,et al. Classifier chains for multi-label classification[J]. Machine Learning,2011,85(3):No. 333. [17] 李宇峰, 黄圣君, 周志华. 一种基于正则化的半监督多标记学习方法[J]. 计算机研究与发展,2012,49(6):1272-1278.(LI Y F,HUANG S J,ZHOU Z H. Regularized semi-supervised multi-label learning[J]. Journal of Computer Research and Development,2012,49(6):1272-1278.) [18] XU L, WANG Z, SHEN Z, et al. Learning low-rank label correlations for multi-label classification with missing labels[C]//Proceedings of the 2014 International conference on Data Mining. Piscataway:IEEE,2014:1067-1072. [19] LUO Y,TAO D,XU C,et al. Multiview vector-valued manifold regularization for multilabel image classification[J]. IEEE Transactions on Neural Network and Learning Systems,2013,24(5):709-722. [20] TAN Q,YU G,DOMENICONI C,et al. Multi-view weak-label learning based on matrix completion[C]//Proceedings of the 2018 SIAM International Conference on Data Mining. Philadelphia, PA:SIAM,2018:450-458. [21] ZHANG Y,ZHOU Z. Multilabel dimensionality reduction via dependence maximization[J]. ACM Transactions on Knowledge Discovery from Data,2010,4(3):No. 14. [22] ZHANG M,PEÑA J M,ROBLES V. Feature selection for multilabel naive Bayes classification[J]. Information Sciences,2009, 179(19):3218-3229. [23] ZHANG M,ZHOU Z. ML-KNN:a lazy learning approach to multi-label learning[J]. Pattern Recognition,2007,40(7):2038-2048. |