[1] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7):1619-1648.(HUANG L W, JIANG B T,LYU S Y,et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers,2018,41(7):1619-1648.) [2] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 200110th ACM International Conference on World Wide Web. New York:ACM,2001:285-295. [3] YUAN F,KARATZOGLOU A,ARAPAKIS L,et al. A simple convolutional generativenetwork for next item recommendation[C]//Proceedings of the 201912th ACM International Conference on Web Search and Data Mining. New York:ACM, 2019:582-590. [4] KOREN Y, BELL R M, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer,2009,42(8):30-37. [5] WANG H,WANG N,YEUNG D Y. Collaborative deep learning for recommender systems[C]//Proceedings of the 201521th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2015:1235-1244. [6] HE X,LIAO L,ZHANG H,et al. Neural collaborative filtering[C]//Proceedings of the 201726th International Conference on World Wide Web. New York:ACM,2017:173-182. [7] BARKAN O, KOENIGSTEIN N. ITEM2VEC:neural item embedding for collaborative filtering[C]//Proceedings of the 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing. Piscataway:IEEE,2016:1-6. [8] ZHENG L,LU C,JIANG F,et al. Spectral collaborative filtering[C]//Proceedings of the 201812th ACM International Conference on Recommender Systems. New York:ACM,2018:311-319. [9] VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]//Proceedings of the 201731st International Conference on Neural Information Processing Systems. Red Hook:Curran Associates Inc.,2017:6000-6010. [10] KABBUR S, NING X, KARYPIS G. FISM:factored item similarity models for top-n recommender systems[C]//Proceedings of the 201319th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2013:659-667. [11] NING X,KARYPIS G. SLIM:sparse linear methods for top-n recommender systems[C]//Proceedings of the 201111th IEEE International Conference on Data Mining. Piscataway:IEEE, 2011:497-506. [12] LECUN Y,BENGIO Y,HINTON G. Deep learning[J]. Nature, 2015,521(7553):436-444. [13] XUE F,HE X,WANG X,et al. Deep item-based collaborative filtering for top-n recommendation[J]. ACM Transactions on Information Systems,2019,37(3):Article No. 33. [14] 邓凯, 黄佳进, 秦进. 基于物品的统一推荐模型[J]. 计算机应用, 2020, 40(2):530-534.(DENG K,HUANG J J,QIN J. Itembased unified recommendation model[J]. Journal of Computer Applications,2020,40(2):530-534.) [15] LUONG T,PHAM H,MANNING C D. Effective approaches to attention-based neural machine translation[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:ACL,2015:1412-1421. [16] HE X,HE Z,SONG J,et al. NAIS:neural attentive item similarity model for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering,2018,30(12):2354-2366. [17] CHEN J, ZHANG H, HE X, et al. Attentive collaborative filtering:multimedia recommendation with item-andcomponentlevel attention[C]//Proceedings of the 201740th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM,2017:335-344. [18] CHEN J,ZHUANG F,HONG X,et al. Attention-driven factor model for explainable personalized recommendation[C]//Proceedings of the 201841th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM,2018:909-912. [19] GULCEHRE C,CHO K,PASCANU R,et al. Learned-norm pooling for deep feed forward and recurrent neuralnetworks[C]//Proceedings of the 2014 Joint European Conference on Machine Learning and Knowledge Discovery in Databases,LNCS 8724. Berlin:Springer,2014:530-546. [20] HARPER F M,KONSTAN J A. The movie lens datasets:history and context[J]. ACM Transactions on Interactive Intelligent Systems,2016,5(4):Article No. 19. [21] FARSEEV A,SAMBORSKII I,FILCHENKOV A,et al. Crossdomain recommendation via clustering on multi-layer graphs[C]//Proceedings of the 201740th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM,2017:195-204. [22] DENG Z,HUANG L,WANG C,et al. DeepCF:a unified framework of representation learning and matching function learning in recommender system[C]//Proceedings of the 201933rd AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press,2019:61-68. [23] RENDLE S,FREUDENTHALER C,GANTNER Z,et al. BPR:Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 200925th Conference on Uncertainty in Artificial Intelligence. Arlington:AUAI Press,2009:452-461. |