[1] SIMONYAN K,ZISSERMAN A. Very deep convolutionalnetworks for large-scale image recognition[EB/OL].[2019-04-10]. https://arxiv.org/pdf/1409.1556.pdf. [2] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [3] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:779-788. [4] REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6517-6525. [5] REDMON J,FARHADI A. YOLOv3:an incremental improvement[EB/OL].[2020-06-08]. https://arxiv.org/pdf/1804.02767.pdf. [6] HOWARD A G,ZHU M,CHEN B,et al. MobileNets:efficient convolutional neuralnetworks for mobile vision applications[EB/OL].[2020-06-08]. https://arxiv.org/pdf/1704.04861.pdf. [7] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:4510-4520. [8] ZHANG X,ZHOU X,LIN M,et al. ShuffleNet:an extremely efficient convolutional neuralnetwork for mobile devices[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:6848-6856. [9] LIU S,HUANG D,WANG Y. Receptive field blocknet for accurate and fast object detection[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11215. Cham:Springer,2018:404-419. [10] 朱繁, 王洪元, 张继. 基于改进的Mask R-CNN的行人细粒度检测算法[J]. 计算机应用, 2019, 39(11):3210-3215.(ZHU F, WANG H Y, ZHANG J. Fine-grained pedestrian detection algorithm based on improved mask R-CNN[J]. Journal of Computer Applications,2019,39(11):3210-3215.) [11] 张家晨, 陈庆奎. 基于YOLO的道路车辆拥堵分析模型[J]. 计算机应用, 2019, 39(1):93-97.(ZHANG J C,CHEN Q K. Road vehicle congestion analysis model based on YOLO[J]. Journal of Computer Applications,2019,39(1):93-97.) [12] 聂鑫, 刘文, 吴巍. 复杂场景下基于增强YOLOv3的船舶目标检测[J]. 计算机应用, 2020, 40(9):2561-2570.(NIE X,LIU W, WU W. Ship detection based on enhanced YOLOv3 undercomplex environments[J]. Journal of Computer Applications, 2020,40(9):2561-2570.) [13] GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2014:580-587. [14] UIJLINGS J R R,VAN DE SANDE K E A,GEVERS T,et al. Selective search for object recognition[J]. International Journal of Computer Vision,2013,104(2):154-171. [15] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:1440-1448. [16] REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards realtime object detection with region proposalnetworks[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence,2017, 39(6):1137-1149. [17] LIU W,ANGUELOV D,ERHAN D,et al. SSD:Single Shot MultiBox Detector[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9905. Cham:Springer, 2016:21-37. [18] RONNEBERGER O, FISCHER P, BROX T. U-net:convolutionalnetworks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham:Springer,2015:234-241. [19] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:1-9. [20] CHEN L C,PAPANDREOU G,KOKKINOS I,et al. DeepLab:Semantic image segmentation with deep convolutionalnets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. [21] ZHUANG F,QI Z,DUAN K,et al. Acomprehensive survey on transfer learning[EB/OL].[2020-07-05]. https://arxiv.org/pdf/1911.02685.pdf. [22] HU J,SHEN L,SUN G. Squeeze-and-excitationnetworks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:7132-7141. [23] SHORTEN C,KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data,2019, 6:Article No. 60. |