计算机应用 ›› 2020, Vol. 40 ›› Issue (12): 3679-3686.DOI: 10.11772/j.issn.1001-9081.2020071084

• 虚拟现实与多媒体计算 • 上一篇    下一篇

基于YOLO-tiny-RFB模型的电站旋钮开关状态识别

史梦安1, 陆振宇2,3   

  1. 1. 苏州大学 应用技术学院, 江苏 苏州 215325;
    2. 南京信息工程大学 人工智能学院, 南京 210044;
    3. 江苏省大气环境与装备技术协同创新中心(南京信息工程大学), 南京 210044
  • 收稿日期:2020-07-22 修回日期:2020-10-09 出版日期:2020-12-10 发布日期:2020-12-23
  • 通讯作者: 史梦安(1985-),男,江苏淮安人,讲师,硕士,CCF会员,主要研究方向:机器学习、基于视觉的同步定位与地图构建方法。mashi@suda.edu.cn
  • 作者简介:陆振宇(1976-),男,江苏常州人,教授,博士,主要研究方向:人工智能、智能控制、模式识别
  • 基金资助:
    江苏省高等学校自然科学研究项目(19KJB520051);国家自然科学基金资助项目(61773220)。

Power station rotary switch status recognition based on YOLO-tiny-RFB model

SHI Meng'an1, LU Zhenyu2,3   

  1. 1. Applied Technology College, Soochow University, Suzhou Jiangsu 215325, China;
    2. School of Artificial Intelligence, Nanjing University of Information Science&Technology, Nanjing Jiangsu 210044, China;
    3. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(Nanjing University of Information Science&Technology), Nanjing Jiangsu 210044, China
  • Received:2020-07-22 Revised:2020-10-09 Online:2020-12-10 Published:2020-12-23
  • Supported by:
    This work is partially supported by the Natural Science Research Foundation of Jiangsu Higher Education Institutions (19KJB520051), the National Natural Science Foundation of China (61773220).

摘要: 针对多类别目标检测在特定场景中数据样本有限的情况,为进一步提高机器人系统中轻量级神经网络对小型物体识别的准确率和稳定性,提出了一种基于机器人操作系统(ROS)的目标状态识别模块。首先,考虑到嵌入式设备的算力限制,目标识别模型采用轻量级的网络YOLO-tiny作为主要架构,并在YOLO-tiny中引入RFB,提出了YOLO-tiny-RFB模型。随后,基于MobileNet对旋钮开关的多种状态实现精准分类。最后,设计数据关联规则,通过图像配准及交并比(IOU)计算等算法使识别模块完成同一场景多次识别结果的融合,从而使用户能够对不同时刻各表计的状态进行追踪。实验结果表明,相较于YOLO-tiny,YOLO-tiny-RFB模型在少量增加模型计算量的情况下,在构建的电站仪器识别数据集上,其目标识别平均精度均值(mAP)提升了17.9%,达到了82.4%。在旋钮数据分布极端不均衡的情况下,通过引入多种数据增广方法使模型的平均准确率达到了90.7%。所提出的目标检测模块和状态识别网络模型能够有效、准确地完成各类仪器的状态识别,同时能够对仪器状态的识别结果在时间跨度上进行融合。

关键词: 机器人操作系统, 目标检测, 图像分类, 轻量级神经网络, 数据增广, YOLO-tiny, RFB, 旋钮开关状态

Abstract: Data samples were always limited for multi-category object detection in some specific scenes. In order to improve the stability and accuracy of the light-weight neural networks for small object recognition in robotic system, an object status recognition module based on Robotic Operating System (ROS) was designed. Firstly, considering the computing power limitation of embedded devices, a lightweight network YOLO-tiny was used as the main architecture of object recognition model, then the Respective Field Block (RFB) was introduced in YOLO-tiny, so as to construct the YOLO-tiny-RFB model. Secondly, MobileNet was employed to conduct an accurate classification of multiple statuses of rotary switches. Finally, the data association rules were designed, and algorithms such as image alignment and Intersection Over Union (IOU) calculation were used to make the recognition module complete the fusion of multiple recognition results of the same scene, so that users were able to track the statuses of each meter at different times. Experimental results show that on the constructed power station instrument recognition dataset, compared with the YOLO-tiny, the YOLO-tiny-RFB model increases the object recognition mean Average Precision (mAP) by 17.9%, which is achieved to 82.4% with a small increase in computational load of model. In the case of extremely unbalanced rotary switch data distribution, the average accuracy of model reaches 90.7% by introducing various data enhancement methods. The proposed object detection module and status recognition network model can complete the status recognition of all kinds of instruments effectively and accurately, meanwhile they can fuse the recognition results of instrument status at different times.

Key words: Robotic Operating System (ROS), object detection, image classification, light-weight neural network, data argumentation, YOLO-tiny, Respective Field Block (RFB), rotary switch status

中图分类号: