| [1] GARCIA-GARCIA A,ORTS-ESCOLANO S,OPREA S O,et al. A review on deep learning techniques applied to semantic segmentation[EB/OL].[2019-04-22]. https://arxiv.org/pdf/1704.06857.pdf. [2] 张学涛. 基于深度学习的道路图像语义分割算法研究[D]. 济南:山东大学,2019:47-58.(ZHANG X T. Research on road image semantic segmentation algorithm based on deep learning[D]. Jinan:Shandong University,2019:47-58.)
 [3] 王嫣然, 陈清亮, 吴俊君. 面向复杂环境的图像语义分割方法综述[J]. 计算机科学,2019,46(9):36-46.(WANG Y R,CHEN Q L,WU J J. Research on image semantic segmentation for complex environments[J]. Computer Science,2019,46(9):36-46.)
 [4] IOFFE S,SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. New York:JMLR. org,2015:448-456.
 [5] WU Y,HE K. Group normalization[J]. International Journal of Computer Vision,2020,128(3):742-755.
 [6] LONG J,SHELHAMER E,DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:3431-3440.
 [7] RONNEBERGER O,FISCHER P,BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham:Springer, 2015:234-241.
 [8] BADRINARAYANAN V,KENDALL A,CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495.
 [9] LI H,XIONG P,FAN H,et al. DFANet:deep feature aggregation for real-time semantic segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:9514-9523.
 [10] ZHAO H,SHI J,QI X,et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6230-6239.
 [11] CHEN L C,ZHU Y,PAPANDREOU G,et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11211. Cham:Springer,2018:833-851.
 [12] PENG C,ZHANG X,YU G,et al. Large Kernel matters-improve semantic segmentation by global convolutional network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:1743-1751.
 [13] CHEN L C,PAPANDREOU G,SCHROFF F,et al. Rethinking atrous convolution for semantic image segmentation[EB/OL].[2019-11-13]. https://arxiv.org/pdf/1706.05587.pdf.
 [14] YU C,WANG J,PENG C,et al. Learning a discriminative feature network for semantic segmentation[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:1857-1866.
 [15] WOO S,PARK J,LEE J Y,et al. CBAM:convolutional block attention module[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11211. Cham:Springer, 2018:3-19.
 [16] XU K,BA J L,KIROS R,et al. Show,attend and tell:neural image caption generation with visual attention[C]//Proceedings of the 32nd International Conference on Machine Learning. New York:JMLR. org,2015:2048-2057.
 [17] VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing System. Red Hook,NY:Curran Associates Inc.,2017:6000-6010.
 [18] WANG F,JIANG M,QIAN C,et al. Residual attention network for image classification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6450-6458.
 [19] ZHANG H, GOODFELLOW I, METAXAS D, et al. Selfattention generative adversarial network[C]//Proceedings of the 36th International Conference on Machine Learning. New York:JMLR. org,2019:7354-7363.
 [20] FU J,LIU J,TIAN H,et al. Dual attention network for scene segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:3141-3149.
 [21] HU J,SHEN L,SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:7132-7141.
 [22] WANG X,GIRSHICK R,GUPTA A,et al. Non-local neural networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:7794-7803.
 [23] CAO Y,XU J,LIN S,et al. GCNet:non-local networks meet squeeze-excitation networks and beyond[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:1971-1980.
 [24] HOWARD A G,ZHU M,CHEN B,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2019-05-15]. https://arxiv.org/pdf/1704.04861.pdf.
 [25] ZHANG X,ZHOU X,LIN M,et al. ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:6848-6856.
 [26] MA N,ZHANG X,ZHENG H,et al. ShuffleNet V2:practical guidelines for efficient CNN architecture design[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11218. Cham:Springer,2018:122-138.
 [27] ZHANG T, QI G J, XIAO B, et al. Interleaved group convolutions for deep neural networks[EB/OL].[2019-08-20]. https://arxiv.org/pdf/1707.02725.pdf.
 [28] XIE G, WANG J, ZHANG T, et al. IGCV2:interleaved structured sparse convolutional neural networks[EB/OL].[2019-05-12]. https://arxiv.org/pdf/1804.06202.pdf.
 [29] SUN K,LI M J,LIU D,et al. IGCV3:interleaved low-rank group convolutions for efficient deep neural networks[C]//Proceedings of the 2018 British Machine Vision Conference. Durham:BMVA Press,2018:No. 0330.
 [30] SANDLER M,HAWARD A,ZHU M,et al. MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:4510-4520.
 [31] HOWARD A,SANDLER M,CHEN B,et al. Searching for mobileNetV3[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:1314-1324.
 [32] LUO J, WU J. An entropy-based pruning method for CNN compression[EB/OL].[2019-07-20]. https://arxiv.org/pdf/1706.05791.pdf.
 [33] TAN M,LE Q V. EfficientNet:rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning. New York:JMLR. org,2019:6105-6114.
 [34] 耿丽丽, 牛保宁. 深度神经网络模型压缩综述[J]. 计算机科学与探索,2020,14(9):1441-1455. (GENG L L, NIU B N. Summary of deep neural network model compression[J]. Journal of Frontiers of Computer Science and Technology, 2020,14(9):1441-1455.)
 [35] HUANG G,LIU Z,VAN DER MAATEN L,et al. Densely connected convolutional networks[C]//Proceeding of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:2261-2269.
 [36] JÉGOU S,DROZDZAL M,VAZQUEZ D,et al. The one hundred layers tiramisu:fully convolutional DenseNets for semantic segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE,2017:1175-1183.
 [37] BROSTOW G J, SHOTTON J, FAUQUEUR J, et al. Segmentation and recognition using structure from motion point clouds[C]//Proceedings of the 2008 European Conference on Computer Vision. LNCS 5302. Berlin:Springer,2008:44-57.
 [38] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2006 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778.
 [39] LIN G, MILAN A, SHEN C, et al. RefineNet:multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:5168-5177.
 [40] PASZKE A,CHAURASIA A,KIM S,et al. ENet:a deep neural network architecture for real-time semantic segmentation[EB/OL].[2020-03-07]. https://arxiv.org/pdf/1606.02147.pdf.
 |