计算机应用 ›› 2021, Vol. 41 ›› Issue (4): 1049-1054.DOI: 10.11772/j.issn.1001-9081.2020081388

所属专题: CCF第35届中国计算机应用大会(CCF NCCA 2020)

• CCF第35届中国计算机应用大会(CCF NCCA 2020) • 上一篇    下一篇

面向多模态磁共振脑瘤图像的小样本分割方法

董阳1, 潘海为1, 崔倩娜1, 边晓菲1, 滕腾1, 王邦菊2   

  1. 1. 哈尔滨工程大学 计算机科学与技术学院, 哈尔滨 150001;
    2. 华中农业大学 理学院, 武汉 430000
  • 收稿日期:2020-09-08 修回日期:2020-10-01 出版日期:2021-04-10 发布日期:2020-11-25
  • 通讯作者: 潘海为
  • 作者简介:董阳(1995—),男,河北涿州人,硕士研究生,主要研究方向:智慧医疗、机器学习;潘海为(1974—),男,黑龙江哈尔滨人,教授,博士,CCF高级会员,主要研究方向:大数据、人工智能、医学图像挖掘;崔倩娜(1991—),女,河南郑州人,博士研究生,主要研究方向:遥感图像分割;边晓菲(1991—),女,黑龙江哈尔滨人,博士研究生,主要研究方向:数据挖掘、医学图像挖掘;滕腾(1996—),男,黑龙江哈尔滨人,硕士研究生,主要研究方向:集成学习;王邦菊(1978—),女,湖北武汉人,教授,博士,主要研究方向:云计算网络。
  • 基金资助:
    国家自然科学基金资助项目(61672181);中央高校基本科研业务费专项基金资助项目(201-510318070)。

Few-shot segmentation method for multi-modal magnetic resonance images of brain tumor

DONG Yang1, PAN Haiwei1, CUI Qianna1, BIAN Xiaofei1, TENG Teng1, WANG Bangju2   

  1. 1. College of Computer Science and Technology, Harbin Engineering University, Harbin Heilongjiang 150001, China;
    2. College of Science, Huazhong Agricultural University, Wuhan Hubei 430000, China
  • Received:2020-09-08 Revised:2020-10-01 Online:2021-04-10 Published:2020-11-25
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (61672181), the Fundamental Research Funds for the Central Universities (201-510318070).

摘要: 针对脑肿瘤磁共振成像(MRI)模态多、训练数据少、类别不平衡以及各个私有数据库差异大等导致分割困难的问题,引入小样本分割方法,并提出基于U-net的原型网络(PU-net)模型用以对脑肿瘤磁共振(MR)图像进行分割。首先对U-net的结构进行调整来提取各类瘤体的特征用以计算原型;然后在原型网络的基础上,逐像素利用原型对各空间位置进行分类,从而获取各类瘤体区域的概率图与分割结果;针对瘤体像素类别不平衡问题,采用自适应权重交叉熵损失函数来减小背景类对损失计算的影响;最后加入原型校验机制,即融合利用分割得到的概率图和查询图像对原型进行校验。所提方法在公开数据集BraTS2018上进行实验,得到的平均Dice系数为0.654,阳性预测率为0.662,灵敏度为0.687,豪斯多夫距离为3.858,平均交并比(mIOU)达到61.4%,与最新的小样本分割方法原型校准网络(PANet)和基于注意力的多上下文引导网络(A-MCG)相比各项指标均有所提升。结果显示引入小样本分割方法对脑肿瘤MR图像进行分割有不错的效果,采用自适应权重交叉熵损失函数也有着一定的帮助,可以对脑肿瘤诊断治疗起到有效的辅助作用。

关键词: 脑肿瘤, 多模态图像, 医学图像分割, 小样本分割, 深度学习

Abstract: Brain tumor Magnetic Resonance Imaging(MRI) has problems such as multi-modality, lacking of training data, class imbalance, and large differences between private databases, which lead to difficulties in segmentation. In order to solve these problems, the few-shot segmentation method was introduced, and a Prototype network based on U-net(PU-net) was proposed to segment brain tumor Magnetic Resonance(MR) images. First, the U-net structure was modified to extract the features of various tumors, which was used to calculate the prototypes. Then, on the basis of the prototype network, the prototypes were used to classify the spatial locations pixel by pixel, so as to obtain the probability maps and segmentation results of various tumor regions. Aiming at the problem of class imbalance, the adaptive weighted cross-entropy loss function was used to reduce the influence of the background class on loss calculation. Finally, the prototype verification mechanism was added, which means the probability maps obtained by segmentation were fused with the query image to verify the prototypes. The proposed method was tested on the public dataset BraTS2018, and the obtained results were as following:the average Dice coefficient of 0.654, the positive prediction rate of 0.662, the sensitivity of 0.687, the Hausdorff distance of 3.858, and the mean Intersection Over Union(mIOU) reached 61.4%. Compared with Prototype Alignment Network(PANet) and Attention-based Multi-Context Guiding Network(A-MCG), all indicators of the proposed method were improved. The results show that the introduction of the few-shot segmentation method has a good effect on brain tumor MR image segmentation, and the adaptive weighted cross-entropy loss function is also helpful, which can play an effective auxiliary role in the diagnosis and treatment of brain tumors.

Key words: brain tumor, multi-modal image, medical image segmentation, few-shot segmentation, deep learning

中图分类号: