[1] 杨新焕, 张勇. 结合MRI多模态信息和3D-CNNs特征提取的脑肿瘤分割研究[J]. 中国CT和MRI杂志,2020,18(9):4-6,23. (YANG X H,ZHANG Y. Brain tumor segmentation based on MRI multimodal information and 3D-CNNs feature extraction[J]. Chinese Journal of CT and MRI,2020,18(9):4-6,23.) [2] LITJENS G,KOOI T,BEJNORDI B E,et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017,42:60-88. [3] MENZE B H,JAKAB A,BAUER S,et al. The multimodal brain tumor image segmentation benchmark (BRATS)[J]. IEEE Transactions on Medical Imaging,2015,34(10):1993-2024. [4] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2012:1097-1105. [5] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-04-10]. https://arxiv.org/pdf/1409.1556v1.pdf. [6] SZEGEDY C,LIU W,JIA Y,et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:1-9. [7] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [8] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:2261-2269. [9] WANG Y,YAO Q,KWOK J T,et al. Generalizing from a few examples:a survey on few-shot learning[J]. ACM Computing Surveys,2020,53(3):No. 63. [10] LONG J,SHELHAMER E,DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:3431-3440. [11] YU F,KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL].[2020-04-30]. https://arxiv.org/pdf/1511.07122.pdf. [12] RONNEBERGER O, FISCHER P, BROX T. U-net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham:Springer,2015:234-241. [13] RAVI S,LAROCHELLE H. Optimization as a model for few-shot learning[EB/OL].[2020-03-01]. https://openreview.net/pdf?id=rJY0-Kcll. [14] SNELL J,SWERSKY K,ZEMEL R. Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2017:4080-4090. [15] SHABAN A,BANSAL S,LIU Z,et al. One-shot learning for semantic segmentation[EB/OL].[2017-09-11]. http://www.bmva.org/bmvc/2017/papers/paper167/paper167.pdf. [16] SIAM M, ORESHKIN B, JAGERSAND M. AMP:adaptive masked proxies for few-shot segmentation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE,2019:5248-5257. [17] ZHANG X, WEI Y, YANG Y, et al. SG-One:similarity guidance network for one-shot semantic segmentation[J]. IEEE Transactions on Cybernetics,2020,50(9):3855-3865. [18] DONG N, XING E P. Few-shot semantic segmentation with prototype learning[EB/OL].[2018-09-11]. http://bmvc2018.org/contents/papers/0255.pdf. [19] HU T,YANG P,ZHANG C,et al. Attention-based multi-context guiding for few-shot semantic segmentation[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:8441-8448. [20] WANG K,LIEW J H,ZOU Y,et al. PANet:few-shot image semantic segmentation with prototype alignment[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE,2019:9196-9205. [21] 贺琪, 李瑶, 宋巍, 等. 小样本的多模态遥感影像高层特征融合分类[J]. 激光与光电子学进展,2019,56(11):No. 111001. (HE Q,LI Y,SONG W, et al. Multimodal remote sensing image classification with small sample size based on high-level feature fusion[J]. Laser and Optoelectronics Progress,2019,56(11):No. 111001.) |